首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   4篇
  2023年   1篇
  2022年   2篇
  2021年   7篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
  2001年   2篇
排序方式: 共有36条查询结果,搜索用时 999 毫秒
11.
A study of polarized light transport in scattering media exhibiting directional anisotropy or linear birefringence is presented in this paper. Novel theoretical and experimental methodologies for the quantification of birefringent alignment based on out‐of‐plane polarized light transport are presented here. A polarized Monte Carlo model and a polarimetric imaging system were devised to predict and measure the impact of birefringence on an impinging linearly polarized light beam. Ex‐vivo experiments conducted on bovine tendon, a biological sample consisting of highly packed type I collagen fibers with birefringent property, showed good agreement with the analytical results.

Top view geometry of the in‐plane ( a ) and the out‐of‐plane ( b ) detection. Letter C indicates the location of the detection arm.  相似文献   

12.
The detrimental effect of severe hypoxia (SH) on neurons can be mitigated by hypoxic preconditioning (HPC), but the molecular mechanisms involved remain unclear, and an understanding of these may provide novel solutions for hypoxic/ischemic disorders (e.g. stroke). Here, we show that the delta-opioid receptor (DOR), an oxygen-sensitive membrane protein, mediates the HPC protection through specific signaling pathways. Although SH caused a decrease in DOR expression and neuronal injury, HPC induced an increase in DOR mRNA and protein levels and reversed the reduction in levels of the endogenous DOR peptide, leucine enkephalin, normally seen during SH, thus protecting the neurons from SH insult. The HPC-induced protection could be blocked by DOR antagonists. The DOR-mediated HPC protection depended on an increase in ERK and Bcl 2 activity, which counteracted the SH-induced increase in p38 MAPK activities and cytochrome c release. The cross-talk between ERK and p38 MAPKs displays a "yinyang" antagonism under the control of the DOR-G protein-protein kinase C pathway. Our findings demonstrate a novel mechanism of HPC neuroprotection (i.e. the intracellular up-regulation of DOR-regulated survival signals).  相似文献   
13.
Hyperglycemia is an important predictor of cardiovascular mortality in patients with diabetes. We investigated the hypothesis that diabetes or acute hyperglycemia attenuates the reduction of myocardial infarct size produced by activation of mitochondrial ATP-regulated potassium (K(ATP)) channels. Acutely instrumented barbiturate-anesthetized dogs were subjected to a 60-min period of coronary artery occlusion and 3 h of reperfusion. Myocardial infarct size (triphenyltetrazolium chloride staining) was 25 +/- 1, 28 +/- 3, and 25 +/- 1% of the area at risk (AAR) for infarction in control, diabetic (3 wk after streptozotocin-alloxan), and hyperglycemic (15% intravenous dextrose) dogs, respectively. Diazoxide (2.5 mg/kg iv) significantly decreased infarct size (10 +/- 1% of AAR, P < 0.05) but did not produce protection in the presence of diabetes (28 +/- 5%) or moderate hyperglycemia (blood glucose 310 +/- 10 mg/dl; 23 +/- 2%). The dose of diazoxide and the degree of hyperglycemia were interactive. Profound (blood glucose 574 +/- 23 mg/dl) but not moderate hyperglycemia blocked the effects of high-dose (5.0 mg/kg) diazoxide [26 +/- 3, 15 +/- 3 (P < 0.05), and 11 +/- 2% (P < 0.05), respectively]. There were no differences in systemic hemodynamics, AAR, or coronary collateral blood flow (by radioactive microspheres) between groups. The results indicate that diabetes or hyperglycemia impairs activation of mitochondrial K(ATP) channels.  相似文献   
14.

Introduction

Trichomonas vaginalis infection is associated with an increased risk of HIV infection in exposed-seronegative women (ESN) despite their unique immune quiescent profile. It is important to understand possible mechanisms, such as recruitment of activated T cells, by which T. vaginalis could facilitate HIV infection in this population.

Methods

We conducted a cross-sectional study exploring the relationships between T. vaginalis infection, inflammatory markers and T cell activation in the cervix of ESN. During scheduled study visits, participants completed a behavioral questionnaire and physical exam, including sexually transmitted infection (STI) screening and collection of endocervical sponge and cytobrush specimens. T cell and monocyte phenotypes were measured in cervical cytobrush specimens using multi-parameter flow cytometry. Cervical sponge specimens were used to measure cytokines (IL-6, IL-8,IL-10, IP-10, RANTES) using Luminex immunoassays and the immune activation marker soluble TNF receptor 1 using ELISA.

Results

Specimens of 65 women were tested. Twenty-one of these women were infected with T. vaginalis. T. vaginalis infection was associated with significantly increased concentrations of IL-8 (1275pg/ml vs. 566pg/ml, p=.02) and sTNFr1 (430 pg/ml vs. 264 pg/ml, p=.005). However, T. vaginalis infection was not associated with increased percent expression of CCR5+ T cells nor increased CD38 and HLADR activation compared to uninfected women. It was also not associated with increased expression of CCR5+ monocytes.

Conclusions

Among ESN T. vaginalis infection is associated with increased levels of genital pro-inflammatory/immune activation markers IL-8 and TNFr1, but was not associated with an increased percentage of activated endocervical T cells along the CD38 and HLADR pathways. Thus, while T.vaginalis infection may result in some reversal of the immune quiescent profile of ESN, enhanced recruitment of activated CD38 and HLADR expressing CD4+ cells into the endocervix may not be part of the mechanism by which Trichomonas infection alters HIV susceptibility in this unique subset of women.  相似文献   
15.
Background aimsDelivery of bone marrow–derived stem and progenitor cells to the site of injury is an effective strategy to enhance bone healing. An alternate approach is to mobilize endogenous, heterogeneous stem cells that will home to the site of injury. AMD3100 is an antagonist of the chemokine receptor 4 (CXCR4) that rapidly mobilizes stem cell populations into peripheral blood. Our hypothesis was that increasing circulating numbers of stem and progenitor cells using AMD3100 will improve bone fracture healing.MethodsA transverse femoral fracture was induced in C57BL/6 mice, after which they were subcutaneously injected for 3 d with AMD3100 or saline control. Mesenchymal stromal cells, hematopoietic stem and progenitor cells and endothelial progenitor cells in the peripheral blood and bone marrow were evaluated by means of flow cytometry, automated hematology analysis and cell culture 24 h after injection and/or fracture. Healing was assessed up to 84 d after fracture by histomorphometry and micro–computed tomography.ResultsAMD3100 injection resulted in higher numbers of circulating mesenchymal stromal cells, hematopoietic stem cells and endothelial progenitor cells. Micro-computed tomography data demonstrated that the fracture callus was significantly larger compared with the saline controls at day 21 and significantly smaller (remodeled) at day 84. AMD3100-treated mice have a significantly higher bone mineral density than do saline-treated counterparts at day 84.ConclusionsOur data demonstrate that early cell mobilization had significant positive effects on healing throughout the regenerative process. Rapid mobilization of endogenous stem cells could provide an effective alternative strategy to cell transplantation for enhancing tissue regeneration.  相似文献   
16.
In vitro, calmodulin (CaM) and S100A1 activate the skeletal muscle ryanodine receptor ion channel (RyR1) at submicromolar Ca(2+) concentrations, whereas at micromolar Ca(2+) concentrations, CaM inhibits RyR1. One amino acid substitution (RyR1-L3625D) has previously been demonstrated to impair CaM binding and regulation of RyR1. Here we show that the RyR1-L3625D substitution also abolishes S100A1 binding. To determine the physiological relevance of these findings, mutant mice were generated with the RyR1-L3625D substitution in exon 74, which encodes the CaM and S100A1 binding domain of RyR1. Homozygous mutant mice (Ryr1(D/D)) were viable and appeared normal. However, single RyR1 channel recordings from Ryr1(D/D) mice exhibited impaired activation by CaM and S100A1 and impaired CaCaM inhibition. Isolated flexor digitorum brevis muscle fibers from Ryr1(D/D) mice had depressed Ca(2+) transients when stimulated by a single action potential. However, during repetitive stimulation, the mutant fibers demonstrated greater relative summation of the Ca(2+) transients. Consistently, in vivo stimulation of tibialis anterior muscles in Ryr1(D/D) mice demonstrated reduced twitch force in response to a single action potential, but greater summation of force during high-frequency stimulation. During repetitive stimulation, Ryr1(D/D) fibers exhibited slowed inactivation of sarcoplasmic reticulum Ca(2+) release flux, consistent with increased summation of the Ca(2+) transient and contractile force. Peak Ca(2+) release flux was suppressed at all voltages in voltage-clamped Ryr1(D/D) fibers. The results suggest that the RyR1-L3625D mutation removes both an early activating effect of S100A1 and CaM and delayed suppressing effect of CaCaM on RyR1 Ca(2+) release, providing new insights into CaM and S100A1 regulation of skeletal muscle excitation-contraction coupling.  相似文献   
17.
Background:Disability-related considerations have largely been absent from the COVID-19 response, despite evidence that people with disabilities are at elevated risk for acquiring COVID-19. We evaluated clinical outcomes in patients who were admitted to hospital with COVID-19 with a disability compared with patients without a disability.Methods:We conducted a retrospective cohort study that included adults with COVID-19 who were admitted to hospital and discharged between Jan. 1, 2020, and Nov. 30, 2020, at 7 hospitals in Ontario, Canada. We compared in-hospital death, admission to the intensive care unit (ICU), hospital length of stay and unplanned 30-day readmission among patients with and without a physical disability, hearing or vision impairment, traumatic brain injury, or intellectual or developmental disability, overall and stratified by age (≤ 64 and ≥ 65 yr) using multivariable regression, controlling for sex, residence in a long-term care facility and comorbidity.Results:Among 1279 admissions to hospital for COVID-19, 22.3% had a disability. We found that patients with a disability were more likely to die than those without a disability (28.1% v. 17.6%), had longer hospital stays (median 13.9 v. 7.8 d) and more readmissions (17.6% v. 7.9%), but had lower ICU admission rates (22.5% v. 28.3%). After adjustment, there were no statistically significant differences between those with and without disabilities for in-hospital death or admission to ICU. After adjustment, patients with a disability had longer hospital stays (rate ratio 1.36, 95% confidence interval [CI] 1.19–1.56) and greater risk of readmission (relative risk 1.77, 95% CI 1.14–2.75). In age-stratified analyses, we observed longer hospital stays among patients with a disability than in those without, in both younger and older subgroups; readmission risk was driven by younger patients with a disability.Interpretation:Patients with a disability who were admitted to hospital with COVID-19 had longer stays and elevated readmission risk than those without disabilities. Disability-related needs should be addressed to support these patients in hospital and after discharge.

A successful public health response to the COVID-19 pandemic requires accurate and timely identification of, and support for, high-risk groups. There is increasing recognition that marginalized groups, including congregate care residents, racial and ethnic minorities, and people experiencing poverty, have elevated incidence of COVID-19.1,2 Older age and comorbidities such as diabetes are also risk factors for severe COVID-19 outcomes.3,4 One potential high-risk group that has received relatively little attention is people with disabilities.The World Health Organization estimates there are 1 billion people with disabilities globally.5 In North America, the prevalence of disability is 20%, with one-third of people older than 65 years having a disability.6 Disabilities include physical disabilities, hearing and vision impairments, traumatic brain injury and intellectual or developmental disabilities.5,6 Although activity limitations experienced by people with disabilities are heterogeneous,5,6 people with disabilities share high rates of risk factors for acquiring COVID-19, including poverty, residence in congregate care and being members of racialized communities.79 People with disabilities may be more reliant on close contact with others to meet their daily needs, and some people with disabilities, especially intellectual developmental disabilities, may have difficulty following public health rules. Once they acquire SARS-CoV-2 infection, people with disabilities may be at risk for severe outcomes because they have elevated rates of comorbidities.10 Some disabilities (e.g., spinal cord injuries and neurologic disabilities) result in physiologic changes that increase vulnerability to respiratory diseases and may mask symptoms of acute respiratory disease, which may delay diagnosis.1113 There have also been reports of barriers to high-quality hospital care for patients with disabilities who have COVID-19, including communication issues caused by the use of masks and restricted access to support persons.1417Some studies have suggested that patients with disabilities and COVID-19 are at elevated risk for severe disease and death, with most evaluating intellectual or developmental disability.13,1826 Yet, consideration of disability-related needs has largely been absent from the COVID-19 response, with vaccine eligibility driven primarily by age and medical comorbidity, limited accommodations made for patients with disabilities who are in hospital, and disability data often not being captured in surveillance programs.1417 To inform equitable pandemic supports, there is a need for data on patients with a broad range of disabilities who have COVID-19. We sought to evaluate standard clinical outcomes in patients admitted to hospital with COVID-1927 (i.e., in-hospital death, intensive care unit [ICU] admission, hospital length of stay and unplanned 30-d readmission) for patients with and without a disability, overall and stratified by age. We hypothesized that patients with a disability would have worse outcomes because of a greater prevalence of comorbidities,10 physiologic characteristics that increase morbidity risk1113 and barriers to high-quality hospital care.1417  相似文献   
18.
Extracellular matrices in vivo are heterogeneous structures containing gaps that cells bridge with an actomyosin network. To understand the basis of bridging, we plated cells on surfaces patterned with fibronectin (FN)‐coated stripes separated by non‐adhesive regions. Bridges developed large tensions where concave cell edges were anchored to FN by adhesion sites. Actomyosin complexes assembled near those sites (both actin and myosin filaments) and moved towards the centre of the non‐adhesive regions in a treadmilling network. Inhibition of myosin‐II (MII) or Rho‐kinase collapsed bridges, whereas extension continued over adhesive areas. Inhibition of actin polymerization (latrunculin‐A, jasplakinolide) also collapsed the actomyosin network. We suggest that MII has distinct functions at different bridge regions: (1) at the concave edges of bridges, MIIA force stimulates actin filament assembly at adhesions and (2) in the body of bridges, myosin cross‐links actin filaments and stimulates actomyosin network healing when breaks occur. Both activities ensure turnover of actin networks needed to maintain stable bridges from one adhesive region to another.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号