首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   872篇
  免费   79篇
  2023年   3篇
  2022年   4篇
  2021年   13篇
  2020年   4篇
  2019年   16篇
  2018年   5篇
  2017年   16篇
  2016年   26篇
  2015年   28篇
  2014年   33篇
  2013年   49篇
  2012年   52篇
  2011年   59篇
  2010年   49篇
  2009年   43篇
  2008年   53篇
  2007年   54篇
  2006年   52篇
  2005年   59篇
  2004年   61篇
  2003年   52篇
  2002年   29篇
  2001年   10篇
  2000年   3篇
  1999年   5篇
  1998年   15篇
  1997年   18篇
  1996年   5篇
  1995年   10篇
  1994年   6篇
  1993年   6篇
  1992年   11篇
  1991年   9篇
  1990年   4篇
  1989年   5篇
  1988年   7篇
  1987年   8篇
  1986年   5篇
  1985年   3篇
  1984年   4篇
  1983年   9篇
  1982年   5篇
  1981年   3篇
  1980年   6篇
  1978年   5篇
  1977年   4篇
  1975年   5篇
  1974年   4篇
  1972年   3篇
  1970年   3篇
排序方式: 共有951条查询结果,搜索用时 171 毫秒
51.
52.
Control of microorganisms such as Bacillus cereus spores is critical to ensure the safety and a long shelf life of foods. A bifunctional single chain antibody has been developed for detection and binding of B. cereus T spores. The genes that encode B. cereus T spore single-chain antibody and streptavidin were connected for use in immunoassays and immobilization of the recombinant antibodies. A truncated streptavidin, which is smaller than but has biotin binding ability similar to that of streptavidin, was used as the affinity domain because of its high and specific affinity with biotin. The fusion protein gene was expressed in Escherichia coli BL21 (DE3) with the T7 RNA polymerase-T7 promoter expression system. Immunoblotting revealed an antigen specificity similar to that of its parent native monoclonal antibody. The single-chain antibody-streptavidin fusion protein can be used in an immunoassay of B. cereus spores by applying a biotinylated enzyme detection system. The recombinant antibodies were immobilized on biotinylated magnetic beads by taking advantage of the strong biotin-streptavidin affinity. Various liquids were artificially contaminated with 5 × 104 B. cereus spores per ml. Greater than 90% of the B. cereus spores in phosphate buffer or 37% of the spores in whole milk were tightly bound and removed from the liquid phase by the immunomagnetic beads.  相似文献   
53.
54.
Expression of CDC2Zm and KNOTTED1 (KN1) in maize (Zea mays L.) and their cross-reacting proteins in barley (Hordeum vulgare L.) was studied using immunolocalization during in-vitro axillary shoot meristem proliferation and adventitious shoot meristem formation. Expression of CDC2Zm, a protein involved in cell division, roughly correlated with in-vitro cell proliferation and in the meristematic domes CDC2Zm expression was triggered during in-vitro proliferation. Analysis of the expression of KN1, a protein necessary for maintenance of the shoot meristem, showed that KN1 or KN1-homologue(s) expression was retained in meristematic cells during in-vitro proliferation of axillary shoot meristems. Multiple adventitious shoot meristems appeared to form directly from the KN1- or KN1 homologue(s)-expressing meristematic cells in the in-vitro proliferating meristematic domes. However, unlike Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum) leaves ectopically expressing KN1 (G. Chuck et al., 1996 Plant Cell 8: 1277–1289; N. Sinha et al., 1993 Genes Dev. 7: 787–797), transgenic maize leaves over-expressing KN1 were unable to initiate adventitious shoot meristems on their surfaces either in planta or in vitro. Therefore, expression of KN1 is not the sole triggering factor responsible for inducing adventitious shoot meristem formation from in-vitro proliferating axillary shoot meristems in maize. Our results show that genes critical to cell division and plant development have utility in defining in-vitro plant morphogenesis at the molecular level and, in combination with transformation technologies, will be powerful tools in identifying the fundamental molecular and-or genetic triggering factor(s) responsible for reprogramming of plant cells during plant morphogenesis in-vitro. Received: 2 June 1997 / Accepted: 21 July 1997  相似文献   
55.
Recent studies have revealed the expression of multiple putative cytoplasmic dynein heavy chain (DHC) genes in several organisms, with each gene encoding a separate protein isoform. This finding is consistent with the hypothesis that different isoforms do different things, as is the case for the axonemal dyneins. Furthermore, the large number of tasks ascribed to cytoplasmic dynein suggests that there may be additional isoforms not yet identified. Two of the mammalian cytoplasmic dynein heavy chains are DHC1a and DHC1b. DHC1a is conventional cytoplasmic dynein and is found in all organisms examined. DHC1b is expressed in organisms that have multiple dyneins, and has been implicated in the intracellular trafficking of molecules in unciliated and ciliated cells. In the present study, we examined the DHC1b protein from rat testis. Testis cytoplasmic dynein contains a large amount of dynein heavy chain reactive with an antibody raised against a peptide sequence of rat DHC1b. The testis anti-DHC1b immunoreactive protein is slightly smaller than testis DHC1a, as assessed by SDS-PAGE. In Northern blots, the DHC1b mRNA is smaller than the DHC1a mRNA. In sucrose gradients made in low ionic strength, DHC1a sedimented at approximately 20S, and the anti-1b immunoreactive heavy chains sedimented in a broad band centered at approximately 14S. The V1-photolysis reaction of individual sucrose gradient fractions revealed three distinct patterns of photolysis, suggesting that there are at least three separate 1b-like heavy chain isoforms in testis. Using a high-stringency Western blotting protocol, the anti-1b antibody and the anti-DHC2 antibody recognized the same heavy chain and specifically bound to one of the three 1b-like heavy chains. We conclude that rat testis contains three 1b-like dynein heavy chains, and one of these is the product of the DHC1b/DHC2 gene previously identified.  相似文献   
56.
Work with cereals (barley and wheat) and a legume (Medicago truncatula) has established thioredoxin h (Trx h) as a central regulatory protein of seeds. Trx h acts by reducing disulfide (S-S) groups of diverse seed proteins (storage proteins, enzymes, and enzyme inhibitors), thereby facilitating germination. Early in vitro protein studies were complemented with experiments in which barley seeds with Trx h overexpressed in the endosperm showed accelerated germination and early or enhanced expression of associated enzymes (α-amylase and pullulanase). The current study extends the transgenic work to wheat. Two approaches were followed to alter the expression of Trx h genes in the endosperm: (1) a hordein promoter and its protein body targeting sequence led to overexpression of Trx hS, and (2) an antisense construct of Trx h9 resulted in cytosolic underexpression of that gene (Arabidopsis designation). Underexpression of Trx h9 led to effects opposite to those observed for overexpression Trx h5 in barley--retardation of germination and delayed or reduced expression of associated enzymes. Similar enzyme changes were observed in developing seeds. The wheat lines with underexpressed Trx showed delayed preharvest sprouting when grown in the greenhouse or field without a decrease in final yield. Wheat with overexpressed Trx h5 showed changes commensurate with earlier in vitro work: increased solubility of disulfide proteins and lower aUergenicity of the gliadin fraction. The results are further evidence that the level of Trx h in cereal endosperm determines fundamental properties as well as potential applications of the seed.  相似文献   
57.
Rehabilitation of animals followed by reintroduction into the wild can benefit conservation by supplementing depleted wild populations or reintroducing a species in an area where it has been extirpated or become extinct. The western lowland gorilla (WLG, Gorilla g. gorilla) is persistently poached; infants are often illegally traded and used as pets. Some are confiscated and rehabilitated, then kept in sanctuaries or reintroduced into the wild. Prior to reintroduction, the ability of the orphans to survive independently in their environment needs to be assessed. Here, we performed a multivariate analysis, including diet composition, activity-budget, and pattern of strata using of a group of five juvenile WLG in the process of rehabilitation and distinguished three sub-periods of ecological significance: the high furgivory period, the Dialium fruits consumption period, and the high folivory period. The consequences of these variations on their well-being (play behaviour) and the group cohesion (spatial proximity and social interactions) were examined. Like wild WLGs, diets shifted seasonally from frugivorous to folivorous, while the same staple foods were consumed and large amounts of Dialium fruits were seasonally gathered high in trees. When succulent fruit intake was the highest, thus providing high energy from sugar, juveniles spent less time feeding, more time playing and group cohesion was the highest. Conversely, the cohesion decreased with increasing folivory, individuals spent more time feeding and less time playing together. Nonetheless, the group cohesion also decreased after the death of one highly social, wild-born orphan. This may underscore the importance of skilled individuals in the cohesion and well-being of the entire group and, ultimately, to rehabilitation success. This study evaluates the rehabilitation success with regards to the methods used and highlights the need to consider a set of individual and environmental factors for enhancing rehabilitation while preserving the local biodiversity and individual well-being.  相似文献   
58.
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号