首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   957篇
  免费   85篇
  1042篇
  2023年   3篇
  2022年   6篇
  2021年   14篇
  2020年   6篇
  2019年   16篇
  2018年   5篇
  2017年   16篇
  2016年   28篇
  2015年   30篇
  2014年   36篇
  2013年   53篇
  2012年   54篇
  2011年   66篇
  2010年   50篇
  2009年   44篇
  2008年   53篇
  2007年   57篇
  2006年   56篇
  2005年   65篇
  2004年   66篇
  2003年   60篇
  2002年   33篇
  2001年   11篇
  2000年   7篇
  1999年   9篇
  1998年   18篇
  1997年   19篇
  1996年   8篇
  1995年   10篇
  1994年   9篇
  1993年   7篇
  1992年   14篇
  1991年   12篇
  1990年   5篇
  1989年   5篇
  1988年   8篇
  1987年   8篇
  1986年   5篇
  1985年   3篇
  1984年   4篇
  1983年   10篇
  1982年   6篇
  1981年   3篇
  1980年   6篇
  1978年   6篇
  1977年   4篇
  1975年   5篇
  1974年   4篇
  1972年   4篇
  1970年   4篇
排序方式: 共有1042条查询结果,搜索用时 15 毫秒
31.
Janich P  Corbeil D 《FEBS letters》2007,581(9):1783-1787
The apical domain of epithelial cells is composed of distinct subdomains such as microvilli, primary cilia and a non-protruding region. Using the cholesterol-binding protein prominin-1 as a specific marker of plasma membrane protrusions we have previously proposed the co-existence of different cholesterol-based lipid microdomains (lipid rafts) within the apical domain [R?per, K., Corbeil, D. and Huttner, W.B. (2000), Retention of prominin in microvilli reveals distinct cholesterol-based lipid microdomains in the apical plasma membrane. Nat. Cell Biol. 2, 582-592]. To substantiate the hypothesis that the microvillar plasma membrane subdomains contain a distinct set of lipids compared to the planar portion we have investigated the distribution of prominin-1 and two raft-associated gangliosides GM(1) and GM(3) by fluorescence microscopy. GM(1) was found to co-localize with prominin-1 on microvilli whereas GM(3) was segregated from there suggesting its localization in the planar region. Regarding the primary cilium, overlapping fluorescent signals of GM(1) or GM(3) and prominin-1 were observed. Thus, our data demonstrate that specific ganglioside-enriched rafts are found in different apical subdomains and reveal that two plasma membrane protrusions with different structural bases (actin for the microvillus and tubulin for the cilium) are composed of distinct types of lipid.  相似文献   
32.
33.
Sura  Shayna A.  Delgadillo  Aaron  Franco  Nancy  Gu  Kelly  Turba  Rachel  Fong  Peggy 《Coral reefs (Online)》2019,38(3):425-429
Coral Reefs - Closely cropped algal turfs are characteristic of healthy coral reefs, but unchecked growth can cause transitions into long sediment-laden turfs, which may be an alternative degraded...  相似文献   
34.
Sex differences in aging occur in many animal species, and they include sex differences in lifespan, in the onset and progression of age‐associated decline, and in physiological and molecular markers of aging. Sex differences in aging vary greatly across the animal kingdom. For example, there are species with longer‐lived females, species where males live longer, and species lacking sex differences in lifespan. The underlying causes of sex differences in aging remain mostly unknown. Currently, we do not understand the molecular drivers of sex differences in aging, or whether they are related to the accepted hallmarks or pillars of aging or linked to other well‐characterized processes. In particular, understanding the role of sex‐determination mechanisms and sex differences in aging is relatively understudied. Here, we take a comparative, interdisciplinary approach to explore various hypotheses about how sex differences in aging arise. We discuss genomic, morphological, and environmental differences between the sexes and how these relate to sex differences in aging. Finally, we present some suggestions for future research in this area and provide recommendations for promising experimental designs.  相似文献   
35.
Viruses that originate in bats may be the most notorious emerging zoonoses that spill over from wildlife into domestic animals and humans. Understanding how these infections filter through ecological systems to cause disease in humans is of profound importance to public health. Transmission of viruses from bats to humans requires a hierarchy of enabling conditions that connect the distribution of reservoir hosts, viral infection within these hosts, and exposure and susceptibility of recipient hosts. For many emerging bat viruses, spillover also requires viral shedding from bats, and survival of the virus in the environment. Focusing on Hendra virus, but also addressing Nipah virus, Ebola virus, Marburg virus and coronaviruses, we delineate this cross-species spillover dynamic from the within-host processes that drive virus excretion to land-use changes that increase interaction among species. We describe how land-use changes may affect co-occurrence and contact between bats and recipient hosts. Two hypotheses may explain temporal and spatial pulses of virus shedding in bat populations: episodic shedding from persistently infected bats or transient epidemics that occur as virus is transmitted among bat populations. Management of livestock also may affect the probability of exposure and disease. Interventions to decrease the probability of virus spillover can be implemented at multiple levels from targeting the reservoir host to managing recipient host exposure and susceptibility.  相似文献   
36.
Neurons in the medullary raphe are critical to opioid analgesia through descending projections to the dorsal horn. Work in anesthetized rats led to the postulate that nociceptive suppression results from tonic activation of nociceptive-inhibiting neurons and tonic inhibition of nociceptive-facilitating neurons. However, morphine does not cause tonic changes in raphe neuronal firing in unanesthetized rodents. Recent work suggests that a drop in activity of nociceptive-inhibiting neurons synchronizes nociceptive circuits and a burst of activity in nociceptive-facilitating neurons facilitates withdrawal magnitude. After morphine, the phasic responses of raphe cells are suppressed along with nociceptive withdrawals. The results suggest a new model of brainstem modulation of nociception in which the medullary raphe facilitates nociceptive reactions when noxious input occurs and may modulate other functions between injurious events.  相似文献   
37.
Targeting pathogenic T cells with Ag-specific tolerizing DNA vaccines encoding autoantigens is a powerful and feasible therapeutic strategy for Th1-mediated autoimmune diseases. However, plasmid DNA contains abundant unmethylated CpG motifs, which induce a strong Th1 immune response. We describe here a novel approach to counteract this undesired side effect of plasmid DNA used for vaccination in Th1-mediated autoimmune diseases. In chronic relapsing experimental autoimmune encephalomyelitis (EAE), combining a myelin cocktail plus IL-4-tolerizing DNA vaccine with a suppressive GpG oligodeoxynucleotide (GpG-ODN) induced a shift of the autoreactive T cell response toward a protective Th2 cytokine pattern. Myelin microarrays demonstrate that tolerizing DNA vaccination plus GpG-ODN further decreased anti-myelin autoantibody epitope spreading and shifted the autoreactive B cell response to a protective IgG1 isotype. Moreover, the addition of GpG-ODN to tolerizing DNA vaccination therapy effectively reduced overall mean disease severity in both the chronic relapsing EAE and chronic progressive EAE mouse models. In conclusion, suppressive GpG-ODN effectively counteracted the undesired CpG-induced inflammatory effect of a tolerizing DNA vaccine in a Th1-mediated autoimmune disease by skewing both the autoaggressive T cell and B cell responses toward a protective Th2 phenotype. These results demonstrate that suppressive GpG-ODN is a simple and highly effective novel therapeutic adjuvant that will boost the efficacy of Ag-specific tolerizing DNA vaccines used for treating Th1-mediated autoimmune diseases.  相似文献   
38.
Cobamides (Cbas) are essential cofactors of reductive dehalogenases (RDases) in organohalide-respiring bacteria (OHRB). Changes in the Cba structure can influence RDase function. Here, we report on the cofactor versatility or selectivity of Desulfitobacterium RDases produced either in the native organism or heterologously. The susceptibility of Desulfitobacterium hafniense strain DCB-2 to guided Cba biosynthesis (i.e. incorporation of exogenous Cba lower ligand base precursors) was analysed. Exogenous benzimidazoles, azabenzimidazoles and 4,5-dimethylimidazole were incorporated by the organism into Cbas. When the type of Cba changed, no effect on the turnover rate of the 3-chloro-4-hydroxy-phenylacetate-converting enzyme RdhA6 and the 3,5-dichlorophenol-dehalogenating enzyme RdhA3 was observed. The impact of the amendment of Cba lower ligand precursors on RDase function was also investigated in Shimwellia blattae, the Cba producer used for the heterologous production of Desulfitobacterium RDases. The recombinant tetrachloroethene RDase (PceAY51) appeared to be non-selective towards different Cbas. However, the functional production of the 1,2-dichloroethane-dihaloeliminating enzyme (DcaA) of Desulfitobacterium dichloroeliminans was completely prevented in cells producing 5,6-dimethylbenzimidazolyl-Cba, but substantially enhanced in cells that incorporated 5-methoxybenzimidazole into the Cba cofactor. The results of the study indicate the utilization of a range of different Cbas by Desulfitobacterium RDases with selected representatives apparently preferring distinct Cbas.  相似文献   
39.
Our previous studies have implied that prostaglandins inhibit cell growth independent of cAMP. Recent reports, however, have suggested that prostaglandin arrest of the cell cycle may be mediated through protein kinase A. In this report, in order to eliminate the role of c-AMP in prostaglandin mediated cell cycle arrest, we use the-49 lymphoma variant (cyc?) cells that lack adenylate cyclase activity. We demonstrate that dimethyl prostaglandin A1 (dmPGA1) inhibits DNA synthesis and cell growth in cyc? cells. DNA synthesis is inhibited 42% by dmPGA1 (50 μM) despite the fact that this cell line lacks cellular components needed for cAMP generation. The ability to decrease DNA synthesis depends upon the specific prostaglandin structure with the most effective form possessing the α,β unsaturated ketone ring. Dimethyl PGA1 is most effective in inhibiting DNA synthesis in cyc? cells, with prostaglandins PGE1 and PGB1 being less potent inhibitors of DNA synthesis. DmPGE2 caused a significant stimulation of DNA synthesis. S-49 cyc- variant cells exposed to (30–50 μm) dmPGA1, arrested in the G1 phase of the cell cycle within 24 h. This growth arrest was reversed when the prostaglandin was removed from the cultured cells; growth resumed within hours showing that this treatment is not toxic. The S-49 cyc? cells were chosen not only for their lack of adenylate cyclase activity, but also because their cell cycle has been extensively studied and time requirements for G1, S, G2, and M phases are known. Within hours after prostaglandin removal the cells resume active DNA synthesis, and cell number doubles within 15 h suggesting rapid entry into S-phase DNA synthesis from the G1 cell cycle block. The S-49 cyc? cells are known to have a G1/S boundary through M phase transition time of 14.8 h, making the location of the prostaglandin cell cycle arrest at or very near the G1/S interface. The oncogenes, c-fos and c-myc which are normally expressed during G1 in proliferating cells have a 2–3 fold enhanced expression in prostaglandin G1 arrested cells. These data using the S-49 variants demonstrate that dmPGA1 inhibits DNA synthesis and arrests the cell cycle independent of cAMP-mediated effects. The prostaglandin arrested cells maintain the gene expression of a G1 synchronous cell which suggests a unique molecular mechanism for prostaglandin action in arresting cell growth. These properties indicate that this compound may be an effective tool to study molecular mechanisms of regulation of the cell cycle.  相似文献   
40.
In the World Health Organization's forthcoming eleventh revision of the International Classification of Diseases and Related Health Problems (ICD‐11), substantial changes have been proposed to the ICD‐10 classification of mental and behavioural disorders related to sexuality and gender identity. These concern the following ICD‐10 disorder groupings: F52 Sexual dysfunctions, not caused by organic disorder or disease; F64 Gender identity disorders; F65 Disorders of sexual preference; and F66 Psychological and behavioural disorders associated with sexual development and orientation. Changes have been proposed based on advances in research and clinical practice, and major shifts in social attitudes and in relevant policies, laws, and human rights standards. This paper describes the main recommended changes, the rationale and evidence considered, and important differences from the DSM‐5. An integrated classification of sexual dysfunctions has been proposed for a new chapter on Conditions Related to Sexual Health, overcoming the mind/body separation that is inherent in ICD‐10. Gender identity disorders in ICD‐10 have been reconceptualized as Gender incongruence, and also proposed to be moved to the new chapter on sexual health. The proposed classification of Paraphilic disorders distinguishes between conditions that are relevant to public health and clinical psychopathology and those that merely reflect private behaviour. ICD‐10 categories related to sexual orientation have been recommended for deletion from the ICD‐11.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号