首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   872篇
  免费   79篇
  951篇
  2023年   3篇
  2022年   5篇
  2021年   13篇
  2020年   4篇
  2019年   16篇
  2018年   5篇
  2017年   16篇
  2016年   26篇
  2015年   28篇
  2014年   33篇
  2013年   49篇
  2012年   52篇
  2011年   59篇
  2010年   49篇
  2009年   43篇
  2008年   53篇
  2007年   54篇
  2006年   51篇
  2005年   59篇
  2004年   61篇
  2003年   52篇
  2002年   29篇
  2001年   10篇
  2000年   3篇
  1999年   5篇
  1998年   15篇
  1997年   18篇
  1996年   5篇
  1995年   10篇
  1994年   6篇
  1993年   6篇
  1992年   11篇
  1991年   9篇
  1990年   4篇
  1989年   5篇
  1988年   7篇
  1987年   8篇
  1986年   5篇
  1985年   3篇
  1984年   4篇
  1983年   9篇
  1982年   5篇
  1981年   3篇
  1980年   6篇
  1978年   5篇
  1977年   4篇
  1975年   5篇
  1974年   4篇
  1972年   3篇
  1970年   3篇
排序方式: 共有951条查询结果,搜索用时 0 毫秒
101.
A new class of diacid analogues that binds at the AMP site not only are very potent but have approximately 10-fold selectivity in liver versus muscle glycogen phosphorylase (GP) in the in vitro assay. The synthesis, structure, and in vitro and in vivo biological evaluation of these liver selective glycogen phosphorylase inhibitors are discussed.  相似文献   
102.
Advances in Arachis genomics for peanut improvement   总被引:3,自引:0,他引:3  
Peanut genomics is very challenging due to its inherent problem of genetic architecture. Blockage of gene flow from diploid wild relatives to the tetraploid; cultivated peanut, recent polyploidization combined with self pollination, and the narrow genetic base of the primary genepool have resulted in low genetic diversity that has remained a major bottleneck for genetic improvement of peanut. Harnessing the rich source of wild relatives has been negligible due to differences in ploidy level as well as genetic drag and undesirable alleles for low yield. Lack of appropriate genomic resources has severely hampered molecular breeding activities, and this crop remains among the less-studied crops. The last five years, however, have witnessed accelerated development of genomic resources such as development of molecular markers, genetic and physical maps, generation of expressed sequenced tags (ESTs), development of mutant resources, and functional genomics platforms that facilitate the identification of QTLs and discovery of genes associated with tolerance/resistance to abiotic and biotic stresses and agronomic traits. Molecular breeding has been initiated for several traits for development of superior genotypes. The genome or at least gene space sequence is expected to be available in near future and this will further accelerate use of biotechnological approaches for peanut improvement.  相似文献   
103.

Background:

Moderate alcohol consumption may reduce cardiovascular events, but little is known about its effect on atrial fibrillation in people at high risk of such events. We examined the association between moderate alcohol consumption and the risk of incident atrial fibrillation among older adults with existing cardiovascular disease or diabetes.

Methods:

We analyzed data for 30 433 adults who participated in 2 large antihypertensive drug treatment trials and who had no atrial fibrillation at baseline. The patients were 55 years or older and had a history of cardiovascular disease or diabetes with end-organ damage. We classified levels of alcohol consumption according to median cut-off values for low, moderate and high intake based on guidelines used in various countries, and we defined binge drinking as more than 5 drinks a day. The primary outcome measure was incident atrial fibrillation.

Results:

A total of 2093 patients had incident atrial fibrillation. The age- and sex-standardized incidence rate per 1000 person-years was 14.5 among those with a low level of alcohol consumption, 17.3 among those with a moderate level and 20.8 among those with a high level. Compared with participants who had a low level of consumption, those with higher levels had an increased risk of incident atrial fibrillation (adjusted hazard ratio [HR] 1.14, 95% confidence interval [CI] 1.04–1.26, for moderate consumption; 1.32, 95% CI 0.97–1.80, for high consumption). Results were similar after we excluded binge drinkers. Among those with moderate alcohol consumption, binge drinkers had an increased risk of atrial fibrillation compared with non–binge drinkers (adjusted HR 1.29, 95% CI 1.02–1.62).

Interpretation:

Moderate to high alcohol intake was associated with an increased incidence of atrial fibrillation among people aged 55 or older with cardiovascular disease or diabetes. Among moderate drinkers, the effect of binge drinking on the risk of atrial fibrillation was similar to that of habitual heavy drinking.A trial fibrillation is associated with an increased risk of stroke and a related high burden of mortality and morbidity, both in the general public and among patients with existing cardiovascular disease.1,2 The prevalence of atrial fibrillation increases steadily with age, as do the associated risks, and atrial fibrillation accounts for up to 23.5% of all strokes among elderly people.3Moderate alcohol consumption has been reported to be associated with a reduced risk of cardiovascular disease and all-cause death,1,2 whereas heavy alcohol intake and binge drinking have been associated with an increased risk of stroke,4 cardiovascular disease and all-cause death.5,6 Similarly, heavy drinking and binge drinking are associated with an increased risk of incident atrial fibrillation in the general population.7 However, the association between moderate drinking and incident atrial fibrillation is less consistent and not well understood among older people with existing cardiovascular disease.In this analysis, we examined whether drinking moderate quantities of alcohol, and binge drinking, would be associated with an increased risk of incident atrial fibrillation in a large cohort of people with existing cardiovascular disease or diabetes with end-organ damage who had been followed prospectively in 2 long-term antihypertensive drug treatment trials.  相似文献   
104.
Proinflammatory M1 activation of hepatic macrophages (HM) is critical in pathogenesis of hepatitis, but its mechanisms are still elusive. Our earlier work demonstrates the role of ferrous iron (Fe(2+)) as a pathogen-associated molecular pattern-independent agonist for activation of IκB kinase (IKK) and NF-κB in HM via activation and interaction of p21(ras), transforming growth factor β-activated kinase-1 (TAK1), and phosphatidylinositol 3-kinase (PI3K) in caveosomes. However, iron-induced signaling upstream of these kinases is not known. Here we show that Fe(2+) induces generation of superoxide anion (O(2)()) in endosomes, reduces protein-tyrosine phosphatase (PTP) activity, and activates Src at 2~10 min of Fe(2+) addition to rat primary HM culture. Superoxide dismutase (SOD) blocks O(2)() generation, PTP inhibition, and Src activation. Fe(2+)-induced p21(ras) activity is abrogated with the Src inhibitor PP2 and SOD. Fe(2+) stimulates Lys(63)-linked polyubiquitination (polyUb) of TRAF6 in caveosomes, and a dominant negative K63R mutant of ubiquitin or SOD prevents iron-induced TRAF6 polyUb and TAK1 activation. These results demonstrate that Fe(2+)-generated O(2)() mediates p21(ras) and TAK1 activation via PTP inhibition and Lys(63)-polyUb of TRAF6 in caveosomes for proinflammatory M1 activation in HM.  相似文献   
105.
Non-alcoholic staetohepatitis (NASH) is associated with fat deposition in the liver favoring inflammatory processes and development of fibrosis, cirrhosis and finally hepatocellular cancer. In Western lifestyle countries, NASH has reached a 20% prevalence in the obese population with escalating tendency in the future. Very often, liver transplantation is the only therapeutic option. Recently, transplantation of hepatocyte-like cells differentiated from mesenchymal stem cells was suggested a feasible alternative to whole organ transplantation to ameliorate donor organ shortage. Hence, in the present work an animal model of NASH was established in immunodeficient mice to investigate the feasibility of human stem cell-derived hepatocyte-like cell transplantation. NASH was induced by feeding a methionine/choline-deficient diet (MCD-diet) for up to 5 weeks. Animals developed a fatty liver featuring fibrosis and elevation of the proinflammatory markers serum amyloid A (SAA) and tumor necrosis factor alpha (TNFα). Hepatic triglycerides were significantly increased as well as alanine aminotransferase demonstrating inflammation-linked hepatocyte damage. Elevation of αSMA mRNA and collagen I as well as liver architecture deterioation indicated massive fibrosis. Both short- and long-term post-transplantation human hepatocyte-like cells resided in the mouse host liver indicating parenchymal penetration and most likely functional engraftment. Hence, the NASH model in the immunodeficient mouse is the first to allow for the assessment of the therapeutic impact of human stem cell-derived hepatocyte transplantation.  相似文献   
106.
In an attempt to understand the applicability of various animal models to dyslipidemia in humans and to identify improved preclinical models for target discovery and validation for dyslipidemia, we measured comprehensive plasma lipid profiles in 24 models. These included five mouse strains, six other nonprimate species, and four nonhuman primate (NHP) species, and both healthy animals and animals with metabolic disorders. Dyslipidemic humans were assessed by the same measures. Plasma lipoprotein profiles, eight major plasma lipid fractions, and FA compositions within these lipid fractions were compared both qualitatively and quantitatively across the species. Given the importance of statins in decreasing plasma low-density lipoprotein cholesterol for treatment of dyslipidemia in humans, the responses of these measures to simvastatin treatment were also assessed for each species and compared with dyslipidemic humans. NHPs, followed by dog, were the models that demonstrated closest overall match to dyslipidemic humans. For the subset of the dyslipidemic population with high plasma triglyceride levels, the data also pointed to hamster and db/db mouse as representative models for practical use in target validation. Most traditional models, including rabbit, Zucker diabetic fatty rat, and the majority of mouse models, did not demonstrate overall similarity to dyslipidemic humans in this study.  相似文献   
107.
Construction and improvement of a genetic map for peanut (Arachis hypogaea L.) continues to be an important task in order to facilitate quantitative trait locus (QTL) analysis and the development of tools for marker-assisted breeding. The objective of this study was to develop a comparative integrated map from two cultivated × cultivated recombinant inbred line (RIL) mapping populations and to apply in mapping Tomato spotted wilt virus (TSWV) resistance trait in peanut. A total of 4,576 simple sequence repeat (SSR) markers from three sources: published SSR markers, newly developed SSR markers from expressed sequence tags (EST) and from bacterial artificial chromosome end-sequences were used for screening polymorphisms. Two cleaved amplified polymorphic sequence markers were also included to differentiate ahFAD2A alleles and ahFAD2B alleles. A total of 324 markers were anchored on this integrated map covering 1,352.1 cM with 21 linkage groups (LGs). Combining information from duplicated loci between LGs and comparing with published diploid maps, seven homoeologous groups were defined and 17 LGs (A1-A10, B1-B4, B7, B8, and B9) were aligned to corresponding A-subgenome or B-subgenome of diploid progenitors. One reciprocal translocation was confirmed in the tetraploid-cultivated peanut genome. Several chromosomal rearrangements were observed by comparing with published cultivated peanut maps. High consistency with cultivated peanut maps derived from different populations may support this integrated map as a reliable reference map for peanut whole genome sequencing assembling. Further two major QTLs for TSWV resistance were identified for each RILs, which illustrated the application of this map.  相似文献   
108.
We have investigated molecular mechanisms for muscle mass accretion in a non-inbred mouse model (DU6P mice) characterized by extreme muscle mass. This extreme muscle mass was developed during 138 generations of phenotype selection for high protein content. Due to the repeated trait selection a complex setting of different mechanisms was expected to be enriched during the selection experiment. In muscle from 29-week female DU6P mice we have identified robust increases of protein kinase B activation (AKT, Ser-473, up to 2-fold) if compared to 11- and 54-week DU6P mice or controls. While a number of accepted effectors of AKT activation, including IGF-I, IGF-II, insulin/IGF-receptor, myostatin or integrin-linked kinase (ILK), were not correlated with this increase, phosphatase and tensin homologue deleted on chromosome 10 (PTEN) was down-regulated in 29-week female DU6P mice. In addition, higher levels of PTEN phosphorylation were found identifying a second mechanism of PTEN inhibition. Inhibition of PTEN and activation of AKT correlated with specific activation of p70S6 kinase and ribosomal protein S6, reduced phosphorylation of eukaryotic initiation factor 2α (eIF2α) and higher rates of protein synthesis in 29-week female DU6P mice. On the other hand, AKT activation also translated into specific inactivation of glycogen synthase kinase 3? (GSK3?) and an increase of muscular glycogen. In muscles from 29-week female DU6P mice a significant increase of protein/DNA was identified, which was not due to a reduction of protein breakdown or to specific increases of translation initiation. Instead our data support the conclusion that a higher rate of protein translation is contributing to the higher muscle mass in mid-aged female DU6P mice. Our results further reveal coevolution of high protein and high glycogen content during the selection experiment and identify PTEN as gate keeper for muscle mass in mid-aged female DU6P mice.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号