首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   13篇
  2022年   8篇
  2021年   7篇
  2020年   5篇
  2019年   14篇
  2018年   5篇
  2017年   6篇
  2016年   5篇
  2015年   9篇
  2014年   7篇
  2013年   11篇
  2012年   7篇
  2011年   11篇
  2010年   5篇
  2009年   5篇
  2008年   6篇
  2007年   4篇
  2006年   6篇
  2005年   6篇
  2004年   5篇
  2003年   2篇
  2002年   2篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1991年   1篇
  1990年   1篇
  1983年   1篇
  1971年   1篇
  1967年   1篇
排序方式: 共有155条查询结果,搜索用时 15 毫秒
11.
Heterotrimeric G proteins are crucial for asymmetric cell division, but the mechanisms of signal activation remain poorly understood. Here, we establish that the evolutionarily conserved protein RIC-8 is required for proper asymmetric division of one-cell stage C. elegans embryos. Spindle severing experiments demonstrate that RIC-8 is required for generation of substantial pulling forces on astral microtubules. RIC-8 physically interacts with GOA-1 and GPA-16, two Galpha subunits that act in a partially redundant manner in one-cell stage embryos. RIC-8 preferentially binds to GDP bound GOA-1 and is a guanine nucleotide exchange factor (GEF) for GOA-1. Our analysis suggests that RIC-8 acts before the GoLoco protein GPR-1/2 in the sequence of events leading to Galpha activation. Furthermore, coimmunoprecipitation and in vivo epistasis demonstrate that inactivation of the Gbeta subunit GPB-1 alleviates the need for RIC-8 in one-cell stage embryos. Our findings suggest a mechanism in which RIC-8 favors generation of Galpha free from Gbetagamma and enables GPR-1/2 to mediate asymmetric cell division.  相似文献   
12.
Hypoxia facilitates tumor invasion and metastasis by promoting neovascularization and co-option of tumor cells in the peritumoral vasculature, leading to dissemination of tumor cells into the circulation. However, until recently, animal models and imaging technology did not enable monitoring of the early events of tumor cell invasion and dissemination in living animals. We recently developed a zebrafish metastasis model to dissect the detailed events of hypoxia-induced tumor cell invasion and metastasis in association with angiogenesis at the single-cell level. In this model, fluorescent DiI-labeled human or mouse tumor cells are implanted into the perivitelline cavity of 48-h-old zebrafish embryos, which are subsequently placed in hypoxic water for 3 d. Tumor cell invasion, metastasis and pathological angiogenesis are detected under fluorescent microscopy in the living fish. The average experimental time for this model is 7 d. Our protocol offers a remarkable opportunity to study molecular mechanisms of hypoxia-induced cancer metastasis.  相似文献   
13.
14.
Asymmetric cell division is an evolutionarily conserved process that gives rise to daughter cells with different fates. In one-cell stage C. elegans embryos, this process is accompanied by asymmetric spindle positioning, which is regulated by anterior-posterior (A-P) polarity cues and driven by force generators located at the cell membrane. These force generators comprise two Gα proteins, the coiled-coil protein LIN-5 and the GoLoco protein GPR-1/2. The distribution of GPR-1/2 at the cell membrane is asymmetric during mitosis, with more protein present on the posterior side, an asymmetry that is thought to be crucial for asymmetric spindle positioning. The mechanisms by which the distribution of components such as GPR-1/2 is regulated in time and space are incompletely understood. Here, we report that the distribution of the Gβ subunit GPB-1, a negative regulator of force generators, varies across the cell cycle, with levels at the cell membrane being lowest during mitosis. Furthermore, we uncover that GPB-1 trafficks through the endosomal network in a dynamin- and RAB-5-dependent manner, which is most apparent during mitosis. We find that GPB-1 trafficking is more pronounced on the anterior side and that this asymmetry is regulated by A-P polarity cues. In addition, we demonstrate that GPB-1 depletion results in the loss of GPR-1/2 asymmetry during mitosis. Overall, our results lead us to propose that modulation of Gβ trafficking plays a crucial role during the asymmetric division of one-cell stage C. elegans embryos.  相似文献   
15.
16.
Understanding of the mechanisms governing spindle positioning during asymmetric division remains incomplete. During unequal division of one-cell stage C. elegans embryos, the Galpha proteins GOA-1 and GPA-16 act in a partially redundant manner to generate pulling forces along astral microtubules. Previous work focused primarily on GOA-1, whereas the mechanisms by which GPA-16 participates in this process are not well understood. Here, we report that GPA-16 is present predominantly at the cortex of one-cell stage embryos. Using co-immunoprecipitation and surface plasmon resonance binding assays, we find that GPA-16 associates with RIC-8 and GPR-1/2, two proteins known to be required for pulling force generation. Using spindle severing as an assay for pulling forces, we demonstrate that inactivation of the Gbeta protein GPB-1 renders GPA-16 and GOA-1 entirely redundant. This suggests that the two Galpha proteins can activate the same pathway and that their dual presence is normally needed to counter Gbetagamma. Using nucleotide exchange assays, we establish that whereas GPR-1/2 acts as a guanine nucleotide dissociation inhibitor (GDI) for GPA-16, as it does for GOA-1, RIC-8 does not exhibit guanine nucleotide exchange factor (GEF) activity towards GPA-16, in contrast to its effect on GOA-1. We establish in addition that RIC-8 is required for cortical localization of GPA-16, whereas it is not required for that of GOA-1. Our analysis demonstrates that this requirement toward GPA-16 is distinct from the known function of RIC-8 in enabling interaction between Galpha proteins and GPR-1/2, thus providing novel insight into the mechanisms of asymmetric spindle positioning.  相似文献   
17.
Expertise in recognizing objects in cluttered scenes is a critical skill for our interactions in complex environments and is thought to develop with learning. However, the neural implementation of object learning across stages of visual analysis in the human brain remains largely unknown. Using combined psychophysics and functional magnetic resonance imaging (fMRI), we show a link between shape-specific learning in cluttered scenes and distributed neuronal plasticity in the human visual cortex. We report stronger fMRI responses for trained than untrained shapes across early and higher visual areas when observers learned to detect low-salience shapes in noisy backgrounds. However, training with high-salience pop-out targets resulted in lower fMRI responses for trained than untrained shapes in higher occipitotemporal areas. These findings suggest that learning of camouflaged shapes is mediated by increasing neural sensitivity across visual areas to bolster target segmentation and feature integration. In contrast, learning of prominent pop-out shapes is mediated by associations at higher occipitotemporal areas that support sparser coding of the critical features for target recognition. We propose that the human brain learns novel objects in complex scenes by reorganizing shape processing across visual areas, while taking advantage of natural image correlations that determine the distinctiveness of target shapes.  相似文献   
18.
Uterine receptivity implies a dialogue between the hormonally primed maternal endometrium and the free-floating blastocyst. Endometrial stromal cells proliferate, avert apoptosis, and undergo decidualization in preparation for implantation; however, the molecular mechanisms that underlie differentiation into the decidual phenotype remain largely undefined. The Notch family of transmembrane receptors transduce extracellular signals responsible for cell survival, cell-to-cell communication, and differentiation, all fundamental processes for decidualization and pregnancy. Using a murine artificial decidualization model, pharmacological inhibition of Notch signaling by γ-secretase inhibition resulted in a significantly decreased deciduoma. Furthermore, a progesterone receptor (PR)-Cre Notch1 bigenic (Notch1(d/d)) confirmed a Notch1-dependent hypomorphic decidual phenotype. Microarray and pathway analysis, following Notch1 ablation, demonstrated significantly altered signaling repertoire. Concomitantly, hierarchical clustering demonstrated Notch1-dependent differences in gene expression. Uteri deprived of Notch1 signaling demonstrated decreased cellular proliferation; namely, reduced proliferation-specific antigen, Ki67, altered p21, cdk6, and cyclinD activity and an increased apoptotic-profile, cleaved caspase-3, Bad, and attenuated Bcl2. The results demonstrate that the preimplantation uterus relies on Notch signaling to inhibit apoptosis of stromal fibroblasts and regulate cell cycle progression, which together promotes successful decidualization. In summary, Notch1 signaling modulates multiple signaling mechanisms crucial for decidualization and these studies provide additional perspectives to the coordination of multiple signaling modalities required during decidualization.  相似文献   
19.
20.
Increase in heart metabolism during severe exercise facilitates production of ROS and result in oxidative stress. Due to shortage of information, the effect of chronic strength exercise on oxidative stress and contractile function of the heart was assessed to explore the threshold for oxidative stress in this kind of exercise training. Male Wistar rats (80) were divided into two test groups exercised 1 and 3 months and two control groups without exercise. Strength exercise was carried by wearing a Canvas Jacket with weights and forced rats to lift the weights. Rats were exercised at 70% of maximum lifted weight 6 days/week, four times/day, and 12 repetitions each time. Finally, the hearts of ten rats/group were homogenized and MDA, SOD, GPX, and catalase (CAT) were determined by ELISA method. In other ten rats/group, left ventricle systolic and end diastolic pressures (LVSP and LVEDP) and contractility indices (LVDP and +dp/dt max) and relaxation velocity (−dp/dt max) were recorded. The coronary outflow was collected. Short- and long-term strength exercise increased heart weight and heart/BW ratio (P < 0.05). In the 3-month exercise group, basal heart rate decreased (P < 0.05). LVEDP did not change but LVDP, +dp/dt max, −dp/dt max, and coronary flow significantly increased in both exercise groups (P < 0.05). None of MDA or SOD, GPX, and CAT significantly changed. The results showed that sub-maximal chronic strength exercise improves heart efficiency without increase in oxidative stress index or decrease in antioxidant defense capacity. These imply that long-time strength exercise up to this intensity is safe for cardiac health.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号