首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2235篇
  免费   294篇
  国内免费   1篇
  2022年   20篇
  2021年   42篇
  2020年   18篇
  2019年   14篇
  2018年   29篇
  2017年   31篇
  2016年   60篇
  2015年   79篇
  2014年   102篇
  2013年   119篇
  2012年   133篇
  2011年   128篇
  2010年   107篇
  2009年   81篇
  2008年   107篇
  2007年   101篇
  2006年   127篇
  2005年   116篇
  2004年   94篇
  2003年   100篇
  2002年   81篇
  2001年   61篇
  2000年   58篇
  1999年   42篇
  1998年   17篇
  1997年   29篇
  1996年   23篇
  1995年   23篇
  1994年   23篇
  1993年   22篇
  1992年   36篇
  1991年   37篇
  1990年   41篇
  1989年   27篇
  1988年   36篇
  1987年   25篇
  1986年   20篇
  1985年   27篇
  1984年   21篇
  1983年   27篇
  1981年   14篇
  1980年   15篇
  1977年   19篇
  1976年   13篇
  1975年   11篇
  1973年   19篇
  1972年   11篇
  1971年   14篇
  1970年   15篇
  1969年   18篇
排序方式: 共有2530条查询结果,搜索用时 296 毫秒
101.
Published biological data suggest that the methyl erythritol phosphate (MEP) pathway, a non-mevalonate isoprenoid biosynthetic pathway, is essential for certain bacteria and other infectious disease organisms. One highly conserved enzyme in the MEP pathway is 2C-methyl-d-erythritol 2,4-cyclodiphosphate synthase (IspF). Fragment-bound complexes of IspF from Burkholderia pseudomallei were used to design and synthesize a series of molecules linking the cytidine moiety to different zinc pocket fragment binders. Testing by surface plasmon resonance (SPR) found one molecule in the series to possess binding affinity equal to that of cytidine diphosphate, despite lacking any metal-coordinating phosphate groups. Close inspection of the SPR data suggest different binding stoichiometries between IspF and test compounds. Crystallographic analysis shows important variations between the binding mode of one synthesized compound and the pose of the bound fragment from which it was designed. The binding modes of these molecules add to our structural knowledge base for IspF and suggest future refinements in this compound series.  相似文献   
102.
103.
Highlights? DCC and netrin-1 are enriched at synapses in the adult mouse forebrain ? DCC is enriched in the PSD and regulates dendritic spine morphology ? LTP induction and memory formation require DCC expression by neurons ? DCC activation of Src is required for NMDAR-dependent LTP in adult CNS  相似文献   
104.
Side effect similarities of drugs have recently been employed to predict new drug targets, and networks of side effects and targets have been used to better understand the mechanism of action of drugs. Here, we report a large‐scale analysis to systematically predict and characterize proteins that cause drug side effects. We integrated phenotypic data obtained during clinical trials with known drug–target relations to identify overrepresented protein–side effect combinations. Using independent data, we confirm that most of these overrepresentations point to proteins which, when perturbed, cause side effects. Of 1428 side effects studied, 732 were predicted to be predominantly caused by individual proteins, at least 137 of them backed by existing pharmacological or phenotypic data. We prove this concept in vivo by confirming our prediction that activation of the serotonin 7 receptor (HTR7) is responsible for hyperesthesia in mice, which, in turn, can be prevented by a drug that selectively inhibits HTR7. Taken together, we show that a large fraction of complex drug side effects are mediated by individual proteins and create a reference for such relations.  相似文献   
105.
106.
Nucleo-cytoplasmic large DNA viruses (NCLDVs) constitute a group of eukaryotic viruses that can have crucial ecological roles in the sea by accelerating the turnover of their unicellular hosts or by causing diseases in animals. To better characterize the diversity, abundance and biogeography of marine NCLDVs, we analyzed 17 metagenomes derived from microbial samples (0.2–1.6 μm size range) collected during the Tara Oceans Expedition. The sample set includes ecosystems under-represented in previous studies, such as the Arabian Sea oxygen minimum zone (OMZ) and Indian Ocean lagoons. By combining computationally derived relative abundance and direct prokaryote cell counts, the abundance of NCLDVs was found to be in the order of 104–105 genomes ml−1 for the samples from the photic zone and 102–103 genomes ml−1 for the OMZ. The Megaviridae and Phycodnaviridae dominated the NCLDV populations in the metagenomes, although most of the reads classified in these families showed large divergence from known viral genomes. Our taxon co-occurrence analysis revealed a potential association between viruses of the Megaviridae family and eukaryotes related to oomycetes. In support of this predicted association, we identified six cases of lateral gene transfer between Megaviridae and oomycetes. Our results suggest that marine NCLDVs probably outnumber eukaryotic organisms in the photic layer (per given water mass) and that metagenomic sequence analyses promise to shed new light on the biodiversity of marine viruses and their interactions with potential hosts.  相似文献   
107.
108.

Background

Circulating microparticles (MPs) derived from endothelial cells and blood cells bear procoagulant activity and promote thrombin generation. Thrombin exerts proinflammatory effects mediating the progression of atherosclerosis. Aortic valve stenosis may represent an atherosclerosis-like process involving both the aortic valve and the vascular system. The aim of this study was to investigate whether MP-induced thrombin generation is related to coronary atherosclerosis and aortic valve calcification.

Methods

In a cross-sectional study of 55 patients with severe aortic valve stenosis, we assessed the coronary calcification score (CAC) as indicator of total coronary atherosclerosis burden, and aortic valve calcification (AVC) by computed tomography. Thrombin-antithrombin complex (TATc) levels were measured as a marker for thrombin formation. Circulating MPs were characterized by flow cytometry according to the expression of established surface antigens and by measuring MP-induced thrombin generation.

Results

Patients with CAC score below the median were classified as patients with low CAC, patients with CAC Score above the median as high CAC. In patients with high CAC compared to patients with low CAC we detected higher levels of TATc, platelet-derived MPs (PMPs), endothelial-derived MPs (EMPs) and MP-induced thrombin generation. Increased level of PMPs and MP-induced thrombin generation were independent predictors for the severity of CAC. In contrast, AVC Score did not differ between patients with high and low CAC and did neither correlate with MPs levels nor with MP-induced thrombin generation.

Conclusion

In patients with severe aortic valve stenosis MP-induced thrombin generation was independently associated with the severity of CAC but not AVC indicating different pathomechanisms involved in coronary artery and aortic valve calcification.  相似文献   
109.
The Drosophila salivary glands (SGs) were well known for the puffing patterns of their polytene chromosomes and so became a tissue of choice to study sequential gene activation by the steroid hormone ecdysone. One well‐documented function of these glands is to produce a secretory glue, which is released during pupariation to fix the freshly formed puparia to the substrate. Over the past two decades SGs have been used to address specific aspects of developmentally‐regulated programmed cell death (PCD) as it was thought that they are doomed for histolysis and after pupariation are just awaiting their fate. More recently, however, we have shown that for the first 3–4 h after pupariation SGs undergo tremendous endocytosis and vacuolation followed by vacuole neutralization and membrane consolidation. Furthermore, from 8 to 10 h after puparium formation (APF) SGs display massive apocrine secretion of a diverse set of cellular proteins. Here, we show that during the period from 11 to 12 h APF, the prepupal glands are very active in calcium oxalate (CaOx) extrusion that resembles renal or nephridial excretory activity. We provide genetic evidence that Prestin, a Drosophila homologue of the mammalian electrogenic anion exchange carrier SLC26A5, is responsible for the instantaneous production of CaOx by the late prepupal SGs. Its positive regulation by the protein kinases encoded by fray and wnk lead to increased production of CaOx. The formation of CaOx appears to be dependent on the cooperation between Prestin and the vATPase complex as treatment with bafilomycin A1 or concanamycin A abolishes the production of detectable CaOx. These data demonstrate that prepupal SGs remain fully viable, physiologically active and engaged in various cellular activities at least until early pupal period, that is, until moments prior to the execution of PCD.  相似文献   
110.
The causes underlying the increased mortality of honeybee Apis mellifera colonies observed over the past decade remain unclear. Since so far the evidence for monocausal explanations is equivocal, involvement of multiple stressors is generally assumed. We here focus on various aspects of forage availability, which have received less attention than other stressors because it is virtually impossible to explore them empirically. We applied the colony model BEEHAVE, which links within‐hive dynamics and foraging, to stylized landscape settings to explore how foraging distance, forage supply, and “forage gaps”, i.e. periods in which honeybees cannot find any nectar and pollen, affect colony resilience and the mechanisms behind. We found that colony extinction was mainly driven by foraging distance, but the timing of forage gaps had strongest effects on time to extinction. Sensitivity to forage gaps of 15 days was highest in June or July even if otherwise forage availability was sufficient to survive. Forage availability affected colonies via cascading effects on queen's egg‐laying rate, reduction of new‐emerging brood stages developing into adult workers, pollen debt, lack of workforce for nursing, and reduced foraging activity. Forage gaps in July led to reduction in egg‐laying and increased mortality of brood stages at a time when the queen's seasonal egg‐laying rate is at its maximum, leading to colony failure over time. Our results demonstrate that badly timed forage gaps interacting with poor overall forage supply reduce honeybee colony resilience. Existing regulation mechanisms which in principle enable colonies to cope with varying forage supply in a given landscape and year, such as a reduction in egg‐laying, have only a certain capacity. Our results are hypothetical, as they are obtained from simplified landscape settings, but they are consistent with existing empirical knowledge. They offer ample opportunities for testing the predicted effects of forage stress in controlled experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号