首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8318篇
  免费   616篇
  国内免费   2篇
  2023年   66篇
  2022年   137篇
  2021年   221篇
  2020年   173篇
  2019年   248篇
  2018年   268篇
  2017年   254篇
  2016年   334篇
  2015年   474篇
  2014年   435篇
  2013年   595篇
  2012年   650篇
  2011年   696篇
  2010年   445篇
  2009年   380篇
  2008年   462篇
  2007年   450篇
  2006年   397篇
  2005年   357篇
  2004年   327篇
  2003年   304篇
  2002年   257篇
  2001年   106篇
  2000年   74篇
  1999年   76篇
  1998年   64篇
  1997年   59篇
  1996年   51篇
  1995年   54篇
  1994年   30篇
  1993年   35篇
  1992年   48篇
  1991年   35篇
  1990年   40篇
  1989年   26篇
  1988年   36篇
  1987年   27篇
  1986年   15篇
  1985年   18篇
  1984年   20篇
  1983年   17篇
  1982年   18篇
  1981年   19篇
  1980年   15篇
  1979年   12篇
  1978年   9篇
  1977年   17篇
  1976年   19篇
  1975年   11篇
  1974年   9篇
排序方式: 共有8936条查询结果,搜索用时 31 毫秒
71.
72.
Phytoplankton account for >45% of global primary production, and have an enormous impact on aquatic food webs and on the entire Earth System. Their members are found among prokaryotes (cyanobacteria) and multiple eukaryotic lineages containing chloroplasts. Genetic surveys of phytoplankton communities generally consist of PCR amplification of bacterial (16S), nuclear (18S) and/or chloroplastic (16S) rRNA marker genes from DNA extracted from environmental samples. However, our appreciation of phytoplankton abundance or biomass is limited by PCR-amplification biases, rRNA gene copy number variations across taxa, and the fact that rRNA genes do not provide insights into metabolic traits such as photosynthesis. Here, we targeted the photosynthetic gene psbO from metagenomes to circumvent these limitations: the method is PCR-free, and the gene is universally and exclusively present in photosynthetic prokaryotes and eukaryotes, mainly in one copy per genome. We applied and validated this new strategy with the size-fractionated marine samples collected by Tara Oceans, and showed improved correlations with flow cytometry and microscopy than when based on rRNA genes. Furthermore, we revealed unexpected features of the ecology of these ecosystems, such as the high abundance of picocyanobacterial aggregates and symbionts in the ocean, and the decrease in relative abundance of phototrophs towards the larger size classes of marine dinoflagellates. To facilitate the incorporation of psbO in molecular-based surveys, we compiled a curated database of >18,000 unique sequences. Overall, psbO appears to be a promising new gene marker for molecular-based evaluations of entire phytoplankton communities.  相似文献   
73.
Species identification is pivotal in biodiversity assessments and proteomic fingerprinting by MALDI-TOF mass spectrometry has already been shown to reliably identify calanoid copepods to species level. However, MALDI-TOF data may contain more information beyond mere species identification. In this study, we investigated different ontogenetic stages (copepodids C1–C6 females) of three co-occurring Calanus species from the Arctic Fram Strait, which cannot be identified to species level based on morphological characters alone. Differentiation of the three species based on mass spectrometry data was without any error. In addition, a clear stage-specific signal was detected in all species, supported by clustering approaches as well as machine learning using Random Forest. More complex mass spectra in later ontogenetic stages as well as relative intensities of certain mass peaks were found as the main drivers of stage distinction in these species. Through a dilution series, we were able to show that this did not result from the higher amount of biomass that was used in tissue processing of the larger stages. Finally, the data were tested in a simulation for application in a real biodiversity assessment by using Random Forest for stage classification of specimens absent from the training data. This resulted in a successful stage-identification rate of almost 90%, making proteomic fingerprinting a promising tool to investigate polewards shifts of Atlantic Calanus species and, in general, to assess stage compositions in biodiversity assessments of Calanoida, which can be notoriously difficult using conventional identification methods.  相似文献   
74.
75.
Bioenergy could play a major role in decarbonizing energy systems in the context of the Paris Agreement. Large-scale bioenergy deployment could be related to sustainability issues and requires major infrastructure investments. It, therefore, needs to be studied carefully. The Bioenergy and Land Optimization Spatially Explicit Model (BLOEM) presented here allows for assessing different bioenergy pathways while encompassing various dimensions that influence their optimal deployment. In this study, BLOEM was applied to the Brazilian context by coupling it with the Brazilian Land Use and Energy Systems (BLUES) model. This allowed investigating the most cost-effective ways of attending future bioenergy supply projections and studying the role of recovered degraded pasture lands in improving land availability in a sustainable and competitive manner. The results show optimizing for limiting deforestation and minimizing logistics costs results in different outcomes. It also indicates that recovering degraded pasture lands is attractive from both logistics and climate perspectives. The systemic approach of BLOEM provides spatial results, highlighting the trade-offs between crop allocation, land use and the logistics dynamics between production, conversion, and demand, providing valuable insights for regional and national climate policy design. This makes it a useful tool for mapping sustainable bioenergy value chain pathways.  相似文献   
76.
Environmental DNA (eDNA) analysis is a powerful tool for remote detection of target organisms. However, obtaining quantitative and longitudinal information from eDNA data is challenging, requiring a deep understanding of eDNA ecology. Notably, if the various size components of eDNA decay at different rates, and we can separate them within a sample, their changing proportions could be used to obtain longitudinal dynamics information on targets. To test this possibility, we conducted an aquatic mesocosm experiment in which we separated fish-derived eDNA components using sequential filtration to evaluate the decay rate and changing proportion of various eDNA particle sizes over time. We then fit four alternative mathematical decay models to the data, building towards a predictive framework to interpret eDNA data from various particle sizes. We found that medium-sized particles (1–10 μm) decayed more slowly than other size classes (i.e., <1 and > 10 μm), and thus made up an increasing proportion of eDNA particles over time. We also observed distinct eDNA particle size distribution (PSD) between our Common carp and Rainbow trout samples, suggesting that target-specific assays are required to determine starting eDNA PSDs. Additionally, we found evidence that different sizes of eDNA particles do not decay independently, with particle size conversion replenishing smaller particles over time. Nonetheless, a parsimonious mathematical model where particle sizes decay independently best explained the data. Given these results, we suggest a framework to discern target distance and abundance with eDNA data by applying sequential filtration, which theoretically has both metabarcoding and single-target applications.  相似文献   
77.
Growth and sexual reproduction in a population of Cyclotella ocellata Pantocseck were studied during one annual cycle in a reservoir and in short-term enclosure experiments performed in situ involving different nutrient conditions and concentrations of zooplankton species. Three phases of auxosporulation in this diatom were distinguishable morphologically: 1) preauxospore, from the beginning of zygote formation until the valves were longitudinally separated, 2) primary auxospore, when the zygote grew too large to fit inside the valves and before it reached its full size, and 3) mature auxospore, characterized by a well-developed, markedly scalloped edge. Under experimental and natural conditions, sexual reproduction was associated with changes in cell size. In the natural system, the auxospore appeared to act as a resting structure during conditions adverse for population growth. A threshold population of small cells appeared to be necessary for sexual reproduction in the natural system, whereas auxosporulation was associated with phosphorus fertilization in the enclosures. In both environments only cells smaller than 9.5 μm in diameter were capable of auxospore formation. Our results suggest that, once having reached the critical cell size, the factors that trigger sexual reproduction may depend on ambient environmental conditions.  相似文献   
78.
Geranium robertianum bears three types of glandular uniseriate trichomes which originate from a single protodermal cell and develop through periclinal divisions. Type I trichomes are procumbent and have an oval apical cell, two stalk cells and a basal cell. Type II trichomes are erect and have a pear shaped apical cell, two stalk cells and a basal cell. Type III trichomes are much longer than the other two types and have an elongated apical cell, five long stalk cells and a basal cell. Type I and type II trichomes are common on leaves while III trichomes are more abundant on flower structures.
Type I and type II trichomes secrete terpenoids and phenols. Type III trichomes are characterized by the accumulation of anthocyanins in the apical cell and secrete flavonoids.  相似文献   
79.
The thermal unfolding of myosin rod, light meromyosin (LMM), and myosin subfragment 2 (S-2) was studied by differential scanning calorimetry (DSC) over the pH range of 6.5–9.0 in 0.5M KCl and either 0.20M sodium phosphate or 0.15M sodium pyrophosphate. Two rod samples were examined: one was purified by Sephadex G-200 without prior denaturation (native rod), and the other was purified by a cycle of denaturation-renaturation followed by Sephacryl S-200 chromatography (renatured rod). There were clearly distinguishable differences in the calorimetric behavior of these two samples. At pH 7.0 in phosphate the DSC curves of native rod were deconvoluted into six endothermic two-state transitions with melting temperatures in the range of 46–67°C and a total enthalpy of 4346 kJ/mol. Under identical conditions the melting profile of LMM was resolved into five endothermic peaks with transition temperatures in the range of 45–66°C, and the thermal profile of long S-2 was resolved into two endotherms, 46 and 57°C. Transition 4 observed with native rod was present in the deconvoluted DSC curve for long S-2, but absent in the DSC curve for LMM. This transition was identified with the high-temperature transition detected with long S-2 and attributed to the melting of the coiled-coil α-helical segment of subfragment 2 (short S-2). The low-temperature transition of long S-2 was attributed to the unfolding of the hinge region. The smallest transition temperatures observed for all three fragments were 45–46°C. It is suggested that the most unstable domain in rod (domain 1) responsible for the 46°C transition includes both the hinge region, which is the C-terminal segment of long S-2, and a short N-terminal segment of LMM. This domain, accounting for 21% of the rod structure, contains the S-2/LMM junction, and upon proteolytic cleavage yields the C-terminal and N-terminal ends of long S-2 and LMM, respectively. Over the pH range of 6.5–7.5, the observed specific heat of denaturation of rod was approximately equal to the sum of the specific heats of LMM and S-2. This finding provides an additional argument for the existence of independent domains in myosin rod.  相似文献   
80.
Heteronuclear NMR relaxation measurements and hydrogen exchange data have been used to characterize protein dynamics in the presence or absence of stabilizing solutes from hyperthermophiles. Rubredoxin from Desulfovibrio gigas was selected as a model protein and the effect of diglycerol phosphate on its dynamic behaviour was studied. The presence of 100 mM diglycerol phosphate induces a fourfold increase in the half-life for thermal denaturation of D. gigas rubredoxin. A model-free analysis of the protein backbone relaxation parameters shows an average increase of generalized order parameters of 0.015 reflecting a small overall reduction in mobility of fast-scale motions. Hydrogen exchange data acquired over a temperature span of 20 degrees C yielded thermodynamic parameters for the structural opening reactions that allow for the exchange. This shows that the closed form of the protein is stabilized by an additional 1.6 kJ x mol(-1) in the presence of the solute. The results seem to indicate that the stabilizing effect is due mainly to a reduction in mobility of the slower, larger-scale motions within the protein structure with an associated increase in the enthalpy of interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号