首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11670篇
  免费   810篇
  国内免费   7篇
  2023年   87篇
  2022年   157篇
  2021年   287篇
  2020年   231篇
  2019年   265篇
  2018年   385篇
  2017年   352篇
  2016年   462篇
  2015年   625篇
  2014年   608篇
  2013年   853篇
  2012年   891篇
  2011年   948篇
  2010年   595篇
  2009年   476篇
  2008年   675篇
  2007年   648篇
  2006年   563篇
  2005年   517篇
  2004年   481篇
  2003年   467篇
  2002年   381篇
  2001年   141篇
  2000年   120篇
  1999年   109篇
  1998年   88篇
  1997年   77篇
  1996年   65篇
  1995年   65篇
  1994年   52篇
  1993年   42篇
  1992年   61篇
  1991年   47篇
  1990年   55篇
  1989年   45篇
  1988年   44篇
  1987年   29篇
  1986年   28篇
  1985年   26篇
  1984年   56篇
  1983年   34篇
  1982年   31篇
  1981年   45篇
  1980年   33篇
  1979年   25篇
  1978年   17篇
  1977年   23篇
  1976年   24篇
  1975年   20篇
  1974年   14篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
121.
122.
Chromosomal changes through pericentric inversions play an important role in the origin of species. Certain pericentric inversions are too minute to be detected cytogenetically, thus hindering the complete reconstruction of hominoid phylogeny. The advent of the fluorescence in situ hybridization (FISH) technique has facilitated the identification of many chromosomal segments, even at the single gene level. Therefore the cosmid probe for Prader-Willi (PWS)/Angelman syndrome to the loci on human chromosome 15 [ql 1-12] is being used as a marker to highlight the complementary sequence in higher primates. We hybridized metaphase chromosomes of chimpanzee (PTR), gorilla (GGO), and orangutan (PPY) with this probe (Oncor) to characterize the chromosomal segments because the nature of these pericentric inversions remains relatively unknown. Our observations suggest that a pericentric inversion has occurred in chimpanzee chromosome (PTR 16) which corresponds to human chromosome 15 at PTR 16 band pl 112, while in gorilla (GGO 15) and orangutan (PPY 16) the bands q11-12 complemented to human chromosome 15 band q11-12. This approach has proven to be a better avenue to characterize the pericentric inversions which have apparently occurred during human evolution. Genetic divergence in the speciation process which occurs through chromosomal rearrangement needs to be reevaluated and further explored using newer techniques.Correspondence to: R.S. Verma  相似文献   
123.
Activation of protein tyrosine kinases is one of the initial events following aggregation of the high-affinity receptor for immunoglobulin E (Fc epsilon RI) on RBL-2H3 cells, a model mast cell line. The protein tyrosine kinase p72syk (Syk), which contains two Src homology 2 (SH2) domains, is activated and associates with phosphorylated Fc epsilon RI subunits after receptor aggregation. In this report, we used Syk SH2 domains, expressed in tandem or individually, as fusion proteins to identify Syk-binding proteins in RBL-2H3 lysates. We show that the tandem Syk SH2 domains selectively associate with tyrosine-phosphorylated forms of the gamma and beta subunits of Fc epsilon RI. The isolated carboxy-proximal SH2 domain exhibited a significantly higher affinity for the Fc epsilon RI subunits than did the amino-proximal domain. When in tandem, the Syk SH2 domains showed enhanced binding to phosphorylated gamma and beta subunits. The conserved tyrosine-based activation motifs contained in the cytoplasmic domains of the gamma and beta subunits, characterized by two YXXL/I sequences in tandem, represent potential high-affinity binding sites for the dual SH2 domains of Syk. Peptide competition studies indicated that Syk exhibits a higher affinity for the phosphorylated tyrosine activation motif of the gamma subunit than for that of the beta subunit. In addition, we show that Syk is the major protein in RBL-2H3 cells that is affinity isolated with phosphorylated peptides corresponding to the phosphorylated gamma subunit motif. These data suggest that Syk associates with the gamma subunit of the high-affinity receptor for immunoglobulin E through an interaction between the tandem SH2 domains of SH2 domains of Syk and the phosphorylated tyrosine activation motif of the gamma subunit and that Syk may be the major signaling protein that binds to Fc epsilon RI tyrosine activation motif of the gamma subunit and that Syk may be the major signaling protein that binds to Dc epsilon tyrosine activation motifs in RBL-2H3 cells.  相似文献   
124.
A new genus of Platycopioida is described from a boxcore sample taken at a depth of 534 m in the ArcticBarents Sea. This is the deepest record ofPlatycopioida so far. Sarsicopia gen. n. is thesistergroup of a taxon comprising Platycopia and Nanocopia; the sistergroup ofthese is Antrisocopia. Sarsicopia gen. n.is the only platycopioid to retain 2 inner setae onthe second endopod segment P2–P4, and 8 setae in thethird endopod segment of P2. The male antennnule isremarkable in having a geniculation located betweenancestral segments XX and XXI. It is suggested thatthis flexure zone was already present in thegroundpattern of Copepoda. Platycopia and Nanocopia have secondarily lost thisgeniculation.  相似文献   
125.
In a previous publication (Rodriguez, M.L., M. Brignoni, and P.J.I. Salas. 1994. J. Cell Sci. 107: 3145–3151), we described the existence of a terminal web-like structure in nonbrush border cells, which comprises a specifically apical cytokeratin, presumably cytokeratin 19. In the present study we confirmed the apical distribution of cytokeratin 19 and expanded that observation to other epithelial cells in tissue culture and in vivo. In tissue culture, subconfluent cell stocks under continuous treatment with two different 21-mer phosphorothioate oligodeoxy nucleotides that targeted cytokeratin 19 mRNA enabled us to obtain confluent monolayers with a partial (40–70%) and transitory reduction in this protein. The expression of other cytoskeletal proteins was undisturbed. This downregulation of cytokeratin 19 resulted in (a) decrease in the number of microvilli; (b) disorganization of the apical (but not lateral or basal) filamentous actin and abnormal apical microtubules; and (c) depletion or redistribution of apical membrane proteins as determined by differential apical–basolateral biotinylation. In fact, a subset of detergent-insoluble proteins was not expressed on the cell surface in cells with lower levels of cytokeratin 19. Apical proteins purified in the detergent phase of Triton X-114 (typically integral membrane proteins) and those differentially extracted in Triton X-100 at 37°C or in n-octyl-β-d-glycoside at 4°C (representative of GPIanchored proteins), appeared partially redistributed to the basolateral domain. A transmembrane apical protein, sucrase isomaltase, was found mispolarized in a subpopulation of the cells treated with antisense oligonucleotides, while the basolateral polarity of Na+– K+ATPase was not affected. Both sucrase isomaltase and alkaline phosphatase (a GPI-anchored protein) appeared partially depolarized in A19 treated CACO-2 monolayers as determined by differential biotinylation, affinity purification, and immunoblot. These results suggest that an apical submembrane cytoskeleton of intermediate filaments is expressed in a number of epithelia, including those without a brush border, although it may not be universal. In addition, these data indicate that this structure is involved in the organization of the apical region of the cytoplasm and the apical membrane.Cell polarity (asymmetry) is a broadly distributed and highly conserved feature of many different cell types, from prokaryotes to higher eukaryotes (Nelson, 1992). In multicellular organisms it is more conspicuous in, but not restricted to, neurons and epithelial cells. In the latter, the plasma membrane is organized in two different domains, apical and basolateral. This characteristic enables epithelia to accomplish their most specialized roles including absorption and secretion and, in general, to perform the functions of organs with an epithelial parenchyma such as the kidney, liver, intestine, stomach, exocrine glands, etc. (Simons and Fuller, 1985; Rodriguez-Boulan and Nelson, 1989).The acquisition and maintenance of epithelial polarity is based on multiple interrelated mechanisms that may work in parallel. Although the origin of polarization depends on the sorting of apical and basolateral membrane proteins at the trans-Golgi network (Simons and Wandinger-Ness, 1990), the mechanisms involved in the transport of apical or basolateral carrier vesicles, the specific fusion of such vesicles to the appropriate domain, and the retention of membrane proteins in their correct positions are also important (Wollner and Nelson, 1992). Various components of the cytoskeleton seem to be especially involved in these mechanisms (Mays et al., 1994). Among them, the microtubules, characteristically oriented in the apical–basal axis with their minus ends facing toward the apical domain, appear in a strategic position to transport carrier vesicles (Bacallao et al., 1989). This orientation is largely expected because of the apical distribution of centrioles and microtubule organizing centers in epithelial cells (Buendia et al., 1990). The molecular interactions responsible for that localization, however, are unknown.Actin is a widespread component of the membrane skeleton found under apical, lateral, and basal membranes in a nonpolarized fashion (Drenckhahn and Dermietzel, 1988; Vega-Salas et al., 1988). Actin bundling into microvillus cores in the presence of villin/fimbrin, on the other hand, is highly polarized to the apical domain (Ezzell et al., 1989; Louvard et al., 1992). In fact, different isoforms of plastins determine microvillus shape in a tissue-specific manner (Arpin et al., 1994b ). Why this arrangement is not found in other actin-rich regions of the cell is unclear (Louvard et al., 1992; Fath and Burgess, 1995).Fodrin, the nonerythroid form of spectrin, underlies the basolateral domain (Nelson and Veshnock, 1987a ,b) and is known to participate in the anchoring/retention of basolateral proteins (Drenckhahn et al., 1985; Nelson and Hammerton, 1989). Although different groups have found specific cytoskeletal anchoring of apical membrane proteins at the “correct” domain (Ojakian and Schwimmer, 1988; Salas et al., 1988; Parry et al., 1990), no specific apical counterpart of the basolateral fodrin cytoskeleton is known. This is especially puzzling since we showed that MDCK cells can maintain apical polarity in the absence of tight junctions, an indication that intradomain retention mechanisms are operational for apical membrane proteins (Vega-Salas et al., 1987a ).It is known that a network of intermediate filament (IF)1, the major component of the terminal web, bridges the desmosomes under the apical membrane in brush border cells (Franke et al., 1979; Hull and Staehelin, 1979; Mooseker, 1985), although no specific protein has been identified with this structure. The observation of a remarkable resistance to extractions of apical proteins anchored to cytoskeletal preparations (Salas et al., 1988) comparable to that of intermediate filaments, led us to the study of cytokeratins in polarized cells. We developed an antibody against a 53-kD intermediate filament protein in MDCK cells. This protein was found to be distributed exclusively to the apical domain and to form large (2,900 S) multi-protein complexes with apical plasma membrane proteins. Internal microsequencing of the 53-kD protein showed very high (95– 100%) homology with two polypeptides in the rod domain of cytokeratin 19 (CK19; Moll et al., 1982) a highly conserved and peculiar intermediate filament protein (Bader et al., 1986). A complete identification however, could not be achieved (Rodriguez et al., 1994). The present study was undertaken to establish that identity and to determine the possible functions of this apical membrane skeleton. Because cytokeratins have been poorly characterized in canine cells, and no cytokeratin sequences are available in this species, we decided to switch from MDCK cells to two human epithelial cell lines, CACO-2, an extensively studied model of epithelial polarization that differentiates in culture to form brush border containing cells (Pinto et al., 1983), and MCF-10A (Tait et al., 1990), a nontumorigenic cell line derived from normal mammary epithelia, as a model of nonbrush border cells.To assess possible functions of cytokeratin 19, we chose to selectively reduce its synthesis using anti-sense phosphorothioate oligodeoxy nucleotides, an extensively used approach in recent years (e.g., Ferreira et al., 1992 ; Hubber et al., 1993; Takeuchi et al., 1994). Although we could not achieve a complete knock out, the steady-state levels of cytokeratin 19 were decreased to an extent that enabled us to detect significant changes in the phenotype of CACO-2 and MCF-10A cells.  相似文献   
126.
127.
Abstract: Alzheimer's disease (AD) is widely held to be a disorder associated with oxidative stress due, in part, to the membrane action of amyloid β-peptide (Aβ). Aβ-associated free radicals cause lipid peroxidation, a major product of which is 4-hydroxy-2- trans -nonenal (HNE). We determined whether HNE would alter the conformation of synaptosomal membrane proteins, which might be related to the known neurotoxicity of Aβ and HNE. Electron paramagnetic resonance spectroscopy, using a protein-specific spin label, MAL-6(2,2,6,6-tetramethyl-4-maleimidopiperidin-1-oxyl), was used to probe conformational changes in gerbil cortical synaptosomal membrane proteins, and a lipid-specific stearic acid label, 5-nitroxide stearate, was used to probe for HNE-induced alterations in the fluidity of the bilayer domain of these membranes. Synaptosomal membranes, incubated with low concentrations of HNE, exhibited changes in protein conformation and bilayer order and motion (fluidity). The changes in protein conformation were found to be concentration- and time-dependent. Significant protein conformational changes were observed at physiologically relevant concentrations of 1–10 µ M HNE, reminiscent of similar changes in synaptosomal membrane proteins from senile plaque- and Aβ-rich AD hippocampal and inferior parietal brain regions. HNE-induced modifications in the physical state of gerbil synaptosomal membrane proteins were prevented completely by using excess glutathione ethyl ester, known to protect neurons from HNE-caused neurotoxicity. Membrane fluidity was found to increase at higher concentrations of HNE (50 µ M ). The results obtained are discussed with relevance to the hypothesis of Aβ-induced free radical-mediated lipid peroxidation, leading to subsequent HNE-induced alterations in the structure and function of key membrane proteins with consequent neurotoxicity in AD brain.  相似文献   
128.
A group of human cytochrome P450 genes encompassing the CYP2A, CYP2B, and CYP2F subfamilies were cloned and assembled into a 350-kb contig localized on the long arm of chromosome 19. Three complete CYP2A genes—CYP2A6, CYP2A7, and CYP2A13—plus two pseudogenes truncated after exon 5, were identified and sequenced. A variant CYP2A6 allele that differed from the corresponding CYP2A6 and CYP2A7 cDNAs previously sequenced was found and was designated CYP2A6ν2. Sequence differences in the CYP2A6ν2 gene are restricted to regions encompassing exons 3, 6, and 8, which bear sequence relatedness with the corresponding exons of the CYP2A7 gene, located downstream and centromeric of CYP2A6ν2, suggesting recent gene-conversion events. The sequencing of all the CYP2A genes allowed the design of a PCR diagnostic test for the normal CYP2A6 allele, the CYP2A6ν2 allele, and a variant—designated CYP2A6ν1—that encodes an enzyme with a single inactivating amino acid change. These variant alleles were found in individuals who were deficient in their ability to metabolize the CYP2A6 probe drug coumarin. The allelic frequencies of CYP2A6ν1 and CYP2A6ν2 differed significantly between Caucasian, Asian, and African-American populations. These studies establish the existence of a new cytochrome P450 genetic polymorphism.  相似文献   
129.
We investigated the use of a monoclonal antibody (MAb 238) to the soybean Bowman-Birk inhibitor (BBI) to verify and understand the intergenomic relationships among the wild perennial Glycine species. Competitive enzyme linked immunosorbent assay and western blot screening studies revealed that the accessions of B-genome (G. latifolia, G. microphylla, and G. tabacina, 2n = 40) and C-genome (G. curvata and G. cyrtoloba) species did not contain the MAb 238 crossreactive proteins (BBI-nulls). By contrast, all the A-genome (G. argyrea, G. canescens, G. clandestina, and G. latrobeana), E-genome (G. tomentella, 2n = 38), and F-genome (G. falcata) species, G. arenaria (genome unknown), and the polyploid (2n = 78,80) G. tomentella accessions were BBI-positive. The D-genome G. tomentella (2n = 40) and tetraploid G. tabacina (2n = 80) contained both BBI-null and BBI-positive type accessions. Among the recently described species, G. hirticaulis (2n = 40), G. lactovirens, and G. pindanica contained the MAb 238 crossreactive proteins while G. albicans did not. Glycine hirticaulis, G. pindanica, and G. tomentella (2n = 38) displayed highly similar MAb 238 crossreactive isoelectric focusing banding patterns, indicating that they are genomically close to each other. Glycine hirticaulis was found to have both diploid (2n = 40) and tetraploid (2n = 80) cytotypes. We demonstrated that the MAb 238 was specific to the trypsin inhibitor domain of the BBI. The MAb 238 clearly reflected all the previously established relationships in the genus Glycine, validating its use as a genome marker.  相似文献   
130.
Somaclonal variants resistant to sugarcane mosaic virus (SCMV) were obtained from susceptible sugarcane cv PR62258 through somatic embryogenesis by increasing the number of subcultures of the embryogenic callus tissue in MS medium with 3 mg/L 2,4-dichlorophenoxyacetic acid. Transfers were made at 30-day intervals for 1, 2 or 3 subcultures. Two somaclones, namely AT626 and BT627, were selected by their resistance to SCMV. These subclones have maintained the resistance trait over seven years of testing in the field. In this report we identified the somaclonal SCMV resistant variants from the maternal line and the nonresistant somaclones, using the RAPD technique.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号