首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14915篇
  免费   1119篇
  国内免费   4篇
  16038篇
  2023年   125篇
  2022年   217篇
  2021年   383篇
  2020年   292篇
  2019年   374篇
  2018年   431篇
  2017年   412篇
  2016年   568篇
  2015年   855篇
  2014年   833篇
  2013年   1111篇
  2012年   1267篇
  2011年   1194篇
  2010年   809篇
  2009年   684篇
  2008年   866篇
  2007年   877篇
  2006年   766篇
  2005年   690篇
  2004年   638篇
  2003年   572篇
  2002年   545篇
  2001年   153篇
  2000年   109篇
  1999年   117篇
  1998年   125篇
  1997年   108篇
  1996年   89篇
  1995年   88篇
  1994年   69篇
  1993年   67篇
  1992年   66篇
  1991年   60篇
  1990年   39篇
  1989年   38篇
  1988年   52篇
  1987年   26篇
  1986年   27篇
  1985年   20篇
  1984年   28篇
  1983年   31篇
  1982年   27篇
  1981年   33篇
  1980年   20篇
  1979年   17篇
  1978年   16篇
  1977年   15篇
  1976年   16篇
  1975年   14篇
  1974年   13篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
71.
Ehrlich cell plasma membrane ferricyanide reductase activity increased in the presence of mastoparan, a generic activator of G proteins, using either whole cells or isolated plasma membrane fractions. Agents that increase intracellularcAMP also increased the rate of ferricyanide reduction by Ehrlich cells. For the first time, evidence is shown on a modulation of plasma membrane redox system bycGMP. In fact, permeant analogs ofcGMP, dibutyrylcGMP, and 8-bromo-cGMP increased the rate of ferricyanide reduction by the Ehrlich cell plasma membrane redox system. Furthermore, specific inhibition ofcGMP-phosphodiesterases by dipyridamole was also accompanied by an enhancement in the rate of ferricyanide reduction. On the other hand, treatments expected to increase cytoplasmic Ca2+ concentrations were accompanied by a remarkable stimulation of the reductase activity. Taking all these data together, it seems that the Ehrlich cell plasma membrane redox system is under a multiple and complex regulation by different signal transduction pathways involving G proteins, cyclic nucleotides, and Ca2+ ions.  相似文献   
72.
73.
Four xylanase preparations that are commercially available, namely Cartazyme from Sandoz, Ecopulp from Alko-ICI, Irgazyme from Ciba-Genencor and Pulpzyme HB from Novo Nordisk, were tested in bleaching experiments of kraft pulps from Pinus radiata. The main objective of this study was to optimize a reduction in the consumption of chlorine dioxide in the bleaching sequences C90/D10EoDED, C70/D30EoDED and D100EDED. Enzymatic treatments led to savings of ClO2 between 3.5 and 3.9 kg per air-dried tons (ADT) in the three bleaching sequences, without affecting the target brightness of the pulps. In these assays, some minor although reproducible differences in the performance of the enzymes were observed. In most cases, xylanase treatment partially affected the beatability of the pulps, measured as the number of revolutions in the PFI mill required to reach the same tensile index as the respective controls.  相似文献   
74.
Management goals in protected areas and/or communities usually include diversity as one of the most valuable and confident criteria. Nevertheless, the use of diversity and related indices as a means of evaluating successful management practices could produce conflicting results. Here we report a case study in one of the most important European protected areas. After 6 years of intensive conservation management of the Don~ana National Park, the general abundance and numbers of the target single-species conservation plan (the Iberian lynx) increased, although carnivore community diversity and evenness decreased. This was a result of a disproportionate increase of an oportunistic native species, the red fox. We propose the combined use of diversity, richness and evenness indices when monitoring management practices such as those reported here.  相似文献   
75.
A new genus of Platycopioida is described from a boxcore sample taken at a depth of 534 m in the ArcticBarents Sea. This is the deepest record ofPlatycopioida so far. Sarsicopia gen. n. is thesistergroup of a taxon comprising Platycopia and Nanocopia; the sistergroup ofthese is Antrisocopia. Sarsicopia gen. n.is the only platycopioid to retain 2 inner setae onthe second endopod segment P2–P4, and 8 setae in thethird endopod segment of P2. The male antennnule isremarkable in having a geniculation located betweenancestral segments XX and XXI. It is suggested thatthis flexure zone was already present in thegroundpattern of Copepoda. Platycopia and Nanocopia have secondarily lost thisgeniculation.  相似文献   
76.
In a previous publication (Rodriguez, M.L., M. Brignoni, and P.J.I. Salas. 1994. J. Cell Sci. 107: 3145–3151), we described the existence of a terminal web-like structure in nonbrush border cells, which comprises a specifically apical cytokeratin, presumably cytokeratin 19. In the present study we confirmed the apical distribution of cytokeratin 19 and expanded that observation to other epithelial cells in tissue culture and in vivo. In tissue culture, subconfluent cell stocks under continuous treatment with two different 21-mer phosphorothioate oligodeoxy nucleotides that targeted cytokeratin 19 mRNA enabled us to obtain confluent monolayers with a partial (40–70%) and transitory reduction in this protein. The expression of other cytoskeletal proteins was undisturbed. This downregulation of cytokeratin 19 resulted in (a) decrease in the number of microvilli; (b) disorganization of the apical (but not lateral or basal) filamentous actin and abnormal apical microtubules; and (c) depletion or redistribution of apical membrane proteins as determined by differential apical–basolateral biotinylation. In fact, a subset of detergent-insoluble proteins was not expressed on the cell surface in cells with lower levels of cytokeratin 19. Apical proteins purified in the detergent phase of Triton X-114 (typically integral membrane proteins) and those differentially extracted in Triton X-100 at 37°C or in n-octyl-β-d-glycoside at 4°C (representative of GPIanchored proteins), appeared partially redistributed to the basolateral domain. A transmembrane apical protein, sucrase isomaltase, was found mispolarized in a subpopulation of the cells treated with antisense oligonucleotides, while the basolateral polarity of Na+– K+ATPase was not affected. Both sucrase isomaltase and alkaline phosphatase (a GPI-anchored protein) appeared partially depolarized in A19 treated CACO-2 monolayers as determined by differential biotinylation, affinity purification, and immunoblot. These results suggest that an apical submembrane cytoskeleton of intermediate filaments is expressed in a number of epithelia, including those without a brush border, although it may not be universal. In addition, these data indicate that this structure is involved in the organization of the apical region of the cytoplasm and the apical membrane.Cell polarity (asymmetry) is a broadly distributed and highly conserved feature of many different cell types, from prokaryotes to higher eukaryotes (Nelson, 1992). In multicellular organisms it is more conspicuous in, but not restricted to, neurons and epithelial cells. In the latter, the plasma membrane is organized in two different domains, apical and basolateral. This characteristic enables epithelia to accomplish their most specialized roles including absorption and secretion and, in general, to perform the functions of organs with an epithelial parenchyma such as the kidney, liver, intestine, stomach, exocrine glands, etc. (Simons and Fuller, 1985; Rodriguez-Boulan and Nelson, 1989).The acquisition and maintenance of epithelial polarity is based on multiple interrelated mechanisms that may work in parallel. Although the origin of polarization depends on the sorting of apical and basolateral membrane proteins at the trans-Golgi network (Simons and Wandinger-Ness, 1990), the mechanisms involved in the transport of apical or basolateral carrier vesicles, the specific fusion of such vesicles to the appropriate domain, and the retention of membrane proteins in their correct positions are also important (Wollner and Nelson, 1992). Various components of the cytoskeleton seem to be especially involved in these mechanisms (Mays et al., 1994). Among them, the microtubules, characteristically oriented in the apical–basal axis with their minus ends facing toward the apical domain, appear in a strategic position to transport carrier vesicles (Bacallao et al., 1989). This orientation is largely expected because of the apical distribution of centrioles and microtubule organizing centers in epithelial cells (Buendia et al., 1990). The molecular interactions responsible for that localization, however, are unknown.Actin is a widespread component of the membrane skeleton found under apical, lateral, and basal membranes in a nonpolarized fashion (Drenckhahn and Dermietzel, 1988; Vega-Salas et al., 1988). Actin bundling into microvillus cores in the presence of villin/fimbrin, on the other hand, is highly polarized to the apical domain (Ezzell et al., 1989; Louvard et al., 1992). In fact, different isoforms of plastins determine microvillus shape in a tissue-specific manner (Arpin et al., 1994b ). Why this arrangement is not found in other actin-rich regions of the cell is unclear (Louvard et al., 1992; Fath and Burgess, 1995).Fodrin, the nonerythroid form of spectrin, underlies the basolateral domain (Nelson and Veshnock, 1987a ,b) and is known to participate in the anchoring/retention of basolateral proteins (Drenckhahn et al., 1985; Nelson and Hammerton, 1989). Although different groups have found specific cytoskeletal anchoring of apical membrane proteins at the “correct” domain (Ojakian and Schwimmer, 1988; Salas et al., 1988; Parry et al., 1990), no specific apical counterpart of the basolateral fodrin cytoskeleton is known. This is especially puzzling since we showed that MDCK cells can maintain apical polarity in the absence of tight junctions, an indication that intradomain retention mechanisms are operational for apical membrane proteins (Vega-Salas et al., 1987a ).It is known that a network of intermediate filament (IF)1, the major component of the terminal web, bridges the desmosomes under the apical membrane in brush border cells (Franke et al., 1979; Hull and Staehelin, 1979; Mooseker, 1985), although no specific protein has been identified with this structure. The observation of a remarkable resistance to extractions of apical proteins anchored to cytoskeletal preparations (Salas et al., 1988) comparable to that of intermediate filaments, led us to the study of cytokeratins in polarized cells. We developed an antibody against a 53-kD intermediate filament protein in MDCK cells. This protein was found to be distributed exclusively to the apical domain and to form large (2,900 S) multi-protein complexes with apical plasma membrane proteins. Internal microsequencing of the 53-kD protein showed very high (95– 100%) homology with two polypeptides in the rod domain of cytokeratin 19 (CK19; Moll et al., 1982) a highly conserved and peculiar intermediate filament protein (Bader et al., 1986). A complete identification however, could not be achieved (Rodriguez et al., 1994). The present study was undertaken to establish that identity and to determine the possible functions of this apical membrane skeleton. Because cytokeratins have been poorly characterized in canine cells, and no cytokeratin sequences are available in this species, we decided to switch from MDCK cells to two human epithelial cell lines, CACO-2, an extensively studied model of epithelial polarization that differentiates in culture to form brush border containing cells (Pinto et al., 1983), and MCF-10A (Tait et al., 1990), a nontumorigenic cell line derived from normal mammary epithelia, as a model of nonbrush border cells.To assess possible functions of cytokeratin 19, we chose to selectively reduce its synthesis using anti-sense phosphorothioate oligodeoxy nucleotides, an extensively used approach in recent years (e.g., Ferreira et al., 1992 ; Hubber et al., 1993; Takeuchi et al., 1994). Although we could not achieve a complete knock out, the steady-state levels of cytokeratin 19 were decreased to an extent that enabled us to detect significant changes in the phenotype of CACO-2 and MCF-10A cells.  相似文献   
77.
78.
Different species of the bristletail genus Lepismachilis were collected in 14 localities in Italy and Spain and an allozyme electrophoretic survey was carried out to estimate the degree of genetic variability and differentiation at intra- and interspecific levels. Four morphological species were initially identified (L osellai, L. y-signata, L. affinis, L. targionii), but the electrophoretic analysis demonstrated the presence of two additional species among the individuals of L. targionii (Lepismachilis spl and sp2). The validity of these species and their differentiation from L targionii were demonstrated by the fixation of alternative allelic patterns at several loci (7 in Lepismachilis spl and 8 in Lepismachilis sp2), coupled with fixed, previously undetected, morphological differences. In addition, Lepismachilis sp2 was sympatric with L. targionii in three collecting sites, where the fixation of alternative allelic patterns unequivocally demonstrated reproductive isolation. Genetic variability did not seem to be correlated with local ecological factors, and differences between species should rather be explained by different historical factors. Low levels of gene flow, estimated with two different indirect methods, were observed in L. targionii and L. y-signata, and were due to high levels of structuring among populations. Genetic differentiation among conspecific populations was not correlated to their geographical arrangement and the presence of loci fixed for different alleles among them suggested that stochastic factors (such as genetic drift) may have played a role in determining genetic differentiation of geographically isolated populations. Genetic divergence values indicated that the six species are well differentiated and allozyme profiles were diagnostic for all of them. On the other hand, allozyme data did not provide adequate information to resolve evolutionary relationships among the species, nor did they confirm the validity of the two subgenera (Lepismachilis and Berlesilis) in which the genus Lepismachilis is traditionally divided.  相似文献   
79.
Predators are often expected to vary their relative predation rates according to the frequency of prey types in the environment (frequency-dependent predation). The underlying cause for this must lie in some dependency of absolute predation rates on the density of prey types in the environment (density-dependent predation). However, frequency-dependent predation may either be caused by 'simple' density-dependent predation, in which the absolute predation rate on a given prey type depends purely on the density of that type, or by more complex responses in which absolute rates depend also on the density of other prey types. It is usually difficult to distinguish the underlying cause of frequency-dependent predation, because frequencies tend to change as densities change. Here, we describe the results of an experiment conducted to disentangle these phenomena under two prey richness (low and high) conditions. We used artificial bird nests (placed on shrubs and on saplings) baited with quail eggs placed in natural forests as models of natural bird nests. Our results indicate that both the absolute and relative predation rates on the prey types may vary in complex ways. Predation rates depend on a complex interaction between the prey's own density, other prey density and the diversity of prey in the environment. Neglecting to include, or consider, these complexities into analyses may lead to erroneous conclusions in studies of absolute or relative predation rates.  相似文献   
80.
A new polymorphic CA repeat sequence was identified within the candidate region fot the autosomal dominant polycystic kidney disease type 2 (PKD2) locus. It should be a useful marker in the localization of this gene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号