首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2691篇
  免费   291篇
  2022年   16篇
  2021年   28篇
  2020年   19篇
  2019年   19篇
  2018年   30篇
  2017年   38篇
  2016年   61篇
  2015年   84篇
  2014年   96篇
  2013年   127篇
  2012年   138篇
  2011年   155篇
  2010年   105篇
  2009年   91篇
  2008年   128篇
  2007年   138篇
  2006年   108篇
  2005年   109篇
  2004年   106篇
  2003年   113篇
  2002年   90篇
  2001年   82篇
  2000年   108篇
  1999年   91篇
  1998年   36篇
  1997年   46篇
  1996年   35篇
  1995年   41篇
  1994年   38篇
  1993年   37篇
  1992年   58篇
  1991年   57篇
  1990年   62篇
  1989年   48篇
  1988年   32篇
  1987年   35篇
  1986年   48篇
  1985年   34篇
  1984年   17篇
  1983年   20篇
  1982年   22篇
  1981年   20篇
  1979年   21篇
  1978年   16篇
  1976年   18篇
  1975年   14篇
  1974年   13篇
  1973年   16篇
  1972年   21篇
  1970年   15篇
排序方式: 共有2982条查询结果,搜索用时 421 毫秒
141.
The shrub Rosa rugosa (Japanese Rose), native to East Asia, is considered one of the most troublesome invasive plant species in natural or semi-natural habitats of northern Europe and has proven very difficult to control. We aimed at disentangling the species’ invasion history in Europe, including determining the number of introductions and their geographic origin, and at investigating whether populations in the introduced and native ranges differ in genetic diversity, structure and degree of differentiation. We found that introduced (n = 16) and native (n = 16) populations had similar levels of genetic diversity at seven nuclear SSR (microsatellite) loci. European populations lack isolation by distance and are less genetically differentiated than are populations in East Asia. Multiple and at least three independent colonization events, one of which was particularly successful, gave rise to current R. rugosa populations in Europe. The geographic distribution patterns of these three genetic clusters could not be explained by natural dispersal alone, indicating that human mediated secondary dispersal is driving the expansion in Europe. One cluster representing three of the European populations was most likely derived from NW Japan, whereas the origin of the remaining thirteen populations could not clearly be resolved. The introduction and expansion in Europe occurred with no significant loss of genetic diversity. We conclude that high propagule pressure at the primary establishment phase is the most parsimonious explanation for this pattern. A potential for long distance seed dispersal, coastal habitat connectivity and an outcrossing breeding system are factors likely to have enabled populations of R. rugosa to avoid detrimental effects of genetic bottlenecks and will further increase the species’ range size and abundance in Europe. We recommend that human-mediated dispersal should be prevented in order to halt the continued expansion.  相似文献   
142.
Background aimsWe have previously described a xeno-free scalable system to generate transplantable dopaminergic neurons from human pluripotent stem cells. However, several important questions remain to be answered about our cell therapy efforts. These include determining the exact time at which cells should be transplanted and whether cells at this stage can be frozen, shipped, thawed and injected without compromising their ability to mature and survive the transplantation procedure. We also needed to determine whether further optimization of the culture process could shorten the development time and reduce variability and whether a current Good Manufacture Practice (CGMP) facility could manufacture cells with fidelity.MethodsWe developed an optimized protocol that included modulating the sonic hedgehog homolog gradient with bone morphogenetic proteins (BMP2) and addition of activin to the culture medium, which shortened the time to generate Lmx1A and FoxA2 immunoreactive cells by 4–6 days.ResultsWe showed that cells at this stage could be safely frozen and thawed while retaining an excellent ability to continue to mature in vitro and survive transplant in vivo. Importantly, we successfully adapted this process to a CGMP facility and manufactured two lots of transplant-ready dopaminergic neurons (>250 vials) under CGMP-compatible conditions. In vitro characterization, including viability/recovery on thawing, whole genome expression as well as expression of midbrain/dopaminergic markers, showed that the cells manufactured under GMP-compatible conditions were similar to cells produced at lab scale.ConclusionsOur results suggest that this optimized protocol can be used to generate dopaminergic neurons for Investigational New Drug enabling studies.  相似文献   
143.

Aim

To characterise changes in pancreatic beta cell mass during the development of diabetes in untreated male C57BLKS/J db/db mice.

Methods

Blood samples were collected from a total of 72 untreated male db/db mice aged 5, 6, 8, 10, 12, 14, 18, 24 and 34 weeks, for measurement of terminal blood glucose, HbA1c, plasma insulin, and C-peptide. Pancreata were removed for quantification of beta cell mass, islet numbers as well as proliferation and apoptosis by immunohistochemistry and stereology.

Results

Total pancreatic beta cell mass increased significantly from 2.1 ± 0.3 mg in mice aged 5 weeks to a peak value of 4.84 ± 0.26 mg (P < 0.05) in 12-week-old mice, then gradually decreased to 3.27 ± 0.44 mg in mice aged 34 weeks. Analysis of islets in the 5-, 10-, and 24-week age groups showed increased beta cell proliferation in the 10-week-old animals whereas a low proliferation is seen in older animals. The expansion in beta cell mass was driven by an increase in mean islet mass as the total number of islets was unchanged in the three groups.

Conclusions/Interpretation

The age-dependent beta cell dynamics in male db/db mice has been described from 5-34 weeks of age and at the same time alterations in insulin/glucose homeostasis were assessed. High beta cell proliferation and increased beta cell mass occur in young animals followed by a gradual decline characterised by a low beta cell proliferation in older animals. The expansion of beta cell mass was caused by an increase in mean islet mass and not islet number.  相似文献   
144.

Background and Aim

Maternal infections during pregnancy have been associated with several neurological disorders in the offspring. However, given the lack of specificity for both the exposures and the outcomes, other factors related to infection such as impaired maternal immune function may be involved in the causal pathway. If impaired maternal immune function plays a role, we would expect infection before pregnancy to be associated with these neurological outcomes.

Methods/Principal Findings

The study population included all first-born singletons in Denmark between January 1 1982 and December 31 2004. We identified women who had hospital-recorded infections within the 5 year period before pregnancy, and women who had hospital-recorded infections during pregnancy. We grouped infections into either infections of the genitourinary system, or any other infections. Cox models were used to estimate adjusted hazard ratios (aHRs) with 95% confidence interval (CI). Maternal infection of the genitourinary system during pregnancy was associated with an increased risk of cerebral palsy (aHR = 1.63, 95% CI: 1.34–1.98) and epilepsy (aHR = 1.27, 95% CI: 1.13–1.42) in the children, compared to children of women without infections during pregnancy. Among women without hospital-recorded infections during pregnancy, maternal infection before pregnancy was associated with an increased risk of epilepsy (aHR = 1.35, 95% CI: 1.21–1.50 for infections of the genitourinary system, and HR = 1.12, 95% CI: 1.03–1.22 for any other infections) and a slightly higher risk of cerebral palsy (aHR = 1.20, 95% CI: 0.96–1.49 for infections of the genitourinary system, and HR = 1.23, 95% CI: 1.06–1.43 for any other infections) in the children, compared to children of women without infections before (and during) pregnancy.

Conclusions

These findings indicate that the maternal immune system, maternal infections, or factors related to maternal immune function play a role in the observed associations between maternal infections before pregnancy and cerebral diseases in the offspring.  相似文献   
145.
To produce large quantities of high quality eukaryotic membrane proteins in Saccharomyces cerevisiae, we modified a high-copy vector to express membrane proteins C-terminally-fused to a Tobacco Etch Virus (TEV) protease detachable Green Fluorescent Protein (GFP)-8His tag, which facilitates localization, quantification, quality control, and purification. Using this expression system we examined the production of a human glucose transceptor and 11 nutrient transporters and transceptors from S. cerevisiae that have not previously been overexpressed in S. cerevisiae and purified. Whole-cell GFP-fluorescence showed that induction of GFP-fusion synthesis from a galactose-inducible promoter at 15°C resulted in stable accumulation of the fusions in the plasma membrane and in intracellular membranes. Expression levels of the 12 fusions estimated by GFP-fluorescence were in the range of 0.4 mg to 1.7 mg transporter pr. liter cell culture. A detergent screen showed that n-dodecyl-ß-D-maltopyranoside (DDM) is acceptable for solubilization of the membrane-integrated fusions. Extracts of solubilized membranes were prepared with this detergent and used for purifications by Ni-NTA affinity chromatography, which yielded partially purified full-length fusions. Most of the fusions were readily cleaved at a TEV protease site between the membrane protein and the GFP-8His tag. Using the yeast oligopeptide transporter Ptr2 as an example, we further demonstrate that almost pure transporters, free of the GFP-8His tag, can be achieved by TEV protease cleavage followed by reverse immobilized metal-affinity chromatography. The quality of the GFP-fusions was analysed by fluorescence size-exclusion chromatography. Membranes solubilized in DDM resulted in preparations containing aggregated fusions. However, 9 of the fusions solubilized in DDM in presence of cholesteryl hemisuccinate and specific substrates, yielded monodisperse preparations with only minor amounts of aggregated membrane proteins. In conclusion, we developed a new effective S. cerevisiae expression system that may be used for production of high-quality eukaryotic membrane proteins for functional and structural analysis.  相似文献   
146.
The spread of multidrug resistant bacteria owing to the intensive use of antibiotics is challenging current antibiotic therapies, and making the discovery and evaluation of new antimicrobial agents a high priority. The evaluation of novel peptide sequences of predicted antimicrobial peptides from different sources is valuable approach to identify alternative antibiotic leads. Two strategies were pursued in this study to evaluate novel antimicrobial peptides from the human β-defensin family (hBD). In the first, a 32-residue peptide was designed based on the alignment of all available hBD primary structures, while in the second a putative 35-residue peptide, hBD10, was mined from the gene DEFB110. Both hBDconsensus and hBD10 were chemically synthesized, folded and purified. They showed antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Mycobacterium tuberculosis, but were not hemolytic on human red blood cells. The NMR-based solution structure of hBDconsensus revealed that it adopts a classical β-defensin fold and disulfide connectivities. Even though the mass spectrum of hBD10 confirmed the formation of three disulfide bonds, it showed limited dispersion in 1H NMR spectra and structural studies were not pursued. The evaluation of different β-defensin structures may identify new antimicrobial agents effective against multidrug-resistant bacterial strains.  相似文献   
147.
In spite of the many developments in synthetic oligonucleotide (ON) chemistry and design, invasion into double-stranded DNA (DSI) under physiological salt and pH conditions remains a challenge. In this work, we provide a new ON tool based on locked nucleic acids (LNAs), designed for strand invasion into duplex DNA (DSI). We thus report on the development of a clamp type of LNA ON—bisLNA—with capacity to bind and invade into supercoiled double-stranded DNA. The bisLNA links a triplex-forming, Hoogsteen-binding, targeting arm with a strand-invading Watson–Crick binding arm. Optimization was carried out by varying the number and location of LNA nucleotides and the length of the triplex-forming versus strand-invading arms. Single-strand regions in target duplex DNA were mapped using chemical probing. By combining design and increase in LNA content, it was possible to achieve a 100-fold increase in potency with 30% DSI at 450 nM using a bisLNA to plasmid ratio of only 21:1. Although this first conceptual report does not address the utility of bisLNA for the targeting of DNA in a chromosomal context, it shows bisLNA as a promising candidate for interfering also with cellular genes.  相似文献   
148.
Twin studies have estimated the heritability of longevity to be approximately 20–30 %. Genome-wide association studies (GWAS) have revealed a large number of determinants of morbidity, but so far, no new polymorphisms have been discovered to be associated with longevity per se in GWAS. We aim to determine whether the genetic architecture of mortality can be explained by single nucleotide polymorphisms (SNPs) associated with common traits and diseases related to mortality. By extensive quality control of published GWAS we created a genetic score from 707 common SNPs associated with 125 diseases or risk factors related with overall mortality. We prospectively studied the association of the genetic score with: (1) time-to-death; (2) incidence of the first of nine major diseases (coronary heart disease, stroke, heart failure, diabetes, dementia, lung, breast, colon and prostate cancers) in two population-based cohorts of Dutch and Swedish individuals (N = 15,039; age range 47–99 years). During a median follow-up of 6.3 years (max 22.2 years), we observed 4,318 deaths and 2,132 incident disease events. The genetic score was significantly associated with time-to-death [hazard ratio (HR) per added risk allele = 1.003, P value = 0.006; HR 4th vs. 1st quartile = 1.103]. The association between the genetic score and incidence of major diseases was stronger (HR per added risk allele = 1.004, P value = 0.002; HR 4th vs. 1st quartile = 1.160). Associations were stronger for individuals dying at older ages. Our findings are compatible with the view of mortality as a complex and highly polygenetic trait, not easily explainable by common genetic variants related to diseases and physiological traits.  相似文献   
149.
Glycosylation is the most abundant and diverse posttranslational modification of proteins. While several types of glycosylation can be predicted by the protein sequence context, and substantial knowledge of these glycoproteomes is available, our knowledge of the GalNAc‐type O‐glycosylation is highly limited. This type of glycosylation is unique in being regulated by 20 polypeptide GalNAc‐transferases attaching the initiating GalNAc monosaccharides to Ser and Thr (and likely some Tyr) residues. We have developed a genetic engineering approach using human cell lines to simplify O‐glycosylation (SimpleCells) that enables proteome‐wide discovery of O‐glycan sites using ‘bottom‐up’ ETD‐based mass spectrometric analysis. We implemented this on 12 human cell lines from different organs, and present a first map of the human O‐glycoproteome with almost 3000 glycosites in over 600 O‐glycoproteins as well as an improved NetOGlyc4.0 model for prediction of O‐glycosylation. The finding of unique subsets of O‐glycoproteins in each cell line provides evidence that the O‐glycoproteome is differentially regulated and dynamic. The greatly expanded view of the O‐glycoproteome should facilitate the exploration of how site‐specific O‐glycosylation regulates protein function.  相似文献   
150.
In order to better understand the antioxidant behavior of a series of polyphenolic 2′-hydroxychalcones, we describe the results of several chemical and biological studies, in vitro and in vivo. Single crystal X-ray methods elucidated their molecular structures and important intermolecular interactions such as H-bonding and molecular stacking in the crystal structures that contribute to our knowledge in explaining antioxidant activity. The results of experiments using the 1,1-diphenyl-2-dipicrylhydrazyl (DPPH) UV–vis spectroscopic method indicate that a hydroxyl group in position 5′ induces the highest antioxidant activity. Consequently, 2,2′,5′-trihydroxychalcone was selected for further study in vitro towards ROS scavenging in L-6 myoblasts and THP-1 human monocytes, where it shows an excellent antioxidant activity in a concentration range lower than that reported by most studies of related molecules. In addition, this chalcone shows a very selective activity: it inhibits the proliferation of leukemic cells, but it does not affect the normal L-6 myoblasts and human fibroblasts. In studying 2,2′,5′-trihydroxychalcone's effect on weight gain and serum glucose and insulin levels in Zucker fatty (fa/fa) rats we found that supplementing the diet with a 10 mg/kg dose of this chalcone (3 times weekly) blunted the increase in glucose that co-occurs with weight gain over the 6-week treatment period. It is concluded that 2,2′,5′-trihydroxychalcone has the potential to serve as a protective agent for some debilitating diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号