首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   40篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2015年   3篇
  2014年   7篇
  2013年   9篇
  2012年   9篇
  2011年   6篇
  2010年   11篇
  2009年   15篇
  2008年   8篇
  2007年   7篇
  2006年   4篇
  2005年   13篇
  2004年   10篇
  2003年   5篇
  2002年   5篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1998年   8篇
  1997年   7篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   7篇
  1988年   3篇
  1987年   4篇
  1986年   5篇
  1985年   4篇
  1984年   3篇
  1983年   6篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1960年   1篇
排序方式: 共有210条查询结果,搜索用时 15 毫秒
131.
132.
Data from the national dairy cow recording systems during 1997 were used to calculate lactation-specific cumulative risk of mastitis treatments and cumulative risk of removal from the herds in Denmark, Finland Norway and Sweden. Sweden had the lowest risk of recorded mastitis treatments during 305 days of lactation and Norway had the highest risk. The incidence risk of recorded mastitis treatments during 305 days of lactation in Denmark, Finland, Norway and Sweden was 0.177, 0.139, 0.215 and 0.127 for first parity cows and 0.228, 0.215, 0.358 and 0.204 for parities higher than three, respectively. The risk of a first parity cow being treated for mastitis was almost 3 times higher at calving in Norway than in Sweden. The period with the highest risk for mastitis treatments was from 2 days before calving until 14 days after calving and the highest risk for removal was from calving to 10 days after calving in all countries.The study clearly demonstrated differences in bovine mastitis treatment patterns among the Nordic countries. The most important findings were the differences in treatment risks during different lactations within each country, as well as differences in strategies with respect to the time during lactation mastitis was treated.  相似文献   
133.
134.
Apoptosis of uninfected bystander CD4(+) T cells contributes to T-cell depletion during human immunodeficiency virus type 1 (HIV-1) pathogenesis. The viral and host mechanisms that lead to bystander apoptosis are not well understood. To investigate properties of the viral envelope glycoproteins (Env proteins) that influence the ability of HIV-1 to induce bystander apoptosis, we used molecularly cloned viruses that differ only in specific amino acids in Env. The ability of these strains to induce bystander apoptosis was tested in herpesvirus saimiri-immortalized primary CD4(+) T cells (CD4/HVS), which resemble activated primary T cells. Changes in Env that increase affinity for CD4 or CCR5 or increase coreceptor binding site exposure enhanced the capacity of HIV-1 to induce bystander apoptosis following viral infection or exposure to nonreplicating virions. Apoptosis induced by HIV-1 virions was inhibited by CD4, CXCR4, and CCR5 antibodies or by the CXCR4 inhibitor AMD3100, but not the fusion inhibitor T20. HIV-1 virions with mutant Envs that bind CXCR4 but are defective for CD4 binding or membrane fusion induced apoptosis, whereas CXCR4 binding-defective mutants did not. These results demonstrate that HIV-1 virions induce apoptosis through a CXCR4- or CCR5-dependent pathway that does not require Env/CD4 signaling or membrane fusion and suggest that HIV-1 variants with increased envelope/receptor affinity or coreceptor binding site exposure may promote T-cell depletion in vivo by accelerating bystander cell death.  相似文献   
135.
The Rab11 subfamily of GTPases plays an important role in vesicle trafficking from endosomes to the plasma membrane. At least six Rab11 effectors (family of Rab11-interacting proteins (FIPs)) have been shown to interact with Rab11 and are hypothesized to regulate various membrane trafficking pathways such as transferrin recycling, cytokinesis, and epidermal growth factor trafficking. In this study, we characterized interactions of FIPs with the Rab11 GTPase using isothermal titration calorimetric studies and mutational analysis. Our data suggest that FIPs cannot differentiate between GTP-bound Rab11a and Rab11b in vitro (50-100 nm affinity) and in vivo. We also show that, although FIPs interact with the GDP-bound form of Rab11 in vitro, the binding affinity (>1000 nm) is not sufficient for FIP and GDP-bound Rab11 interactions to occur in vivo. Mutational analysis revealed that both the conserved hydrophobic patch and Tyr628 are important for the GTP-dependent binding of Rab11 to FIPs. The entropy and enthalpy analyses suggest that binding to Rab11a/b may induce conformational changes in FIPs.  相似文献   
136.
Cytoskeletal networks control organelle subcellular distribution and function. Herein, we describe a previously unsuspected association between intermediate filament proteins and the adaptor complex AP-3. AP-3 and intermediate filament proteins cosedimented and coimmunoprecipitated as a complex free of microtubule and actin binding proteins. Genetic perturbation of the intermediate filament cytoskeleton triggered changes in the subcellular distribution of the adaptor AP-3 and late endocytic/lysosome compartments. Concomitant with these architectural changes, and similarly to AP-3-null mocha cells, fibroblasts lacking vimentin were compromised in their vesicular zinc uptake, their organellar pH, and their total and surface content of AP-3 cargoes. However, the total content and surface levels, as well as the distribution of the transferrin receptor, a membrane protein whose sorting is AP-3 independent, remained unaltered in both AP-3- and vimentin-null cells. Based on the phenotypic convergence between AP-3 and vimentin deficiencies, we predicted and documented a reduced autophagosome content in mocha cells, a phenotype previously reported in cells with disrupted intermediate filament cytoskeletons. Our results reveal a novel role of the intermediate filament cytoskeleton in organelle/adaptor positioning and in regulation of the adaptor complex AP-3.  相似文献   
137.
Rab 11 GTPase is an important regulator of endocytic membrane traffic. Recently, we and others have identified a novel family of Rab11 binding proteins, known as Rab11-family interacting proteins (FIPs). One of the family members, Rab coupling protein (RCP), was identified as a protein binding to both Rab4 and Rab11 GTPases. RCP was therefore suggested to serve a dual function as Rab4 and Rab11 binding protein. In this study, we characterized the cellular functions of RCP and mapped its interactions with Rab4 and Rab11. Our data show that RCP interacts only weakly with Rab4 in vitro and does not play the role of coupling Rab11 and Rab4 in vivo. Furthermore, our data indicate that the RCP-Rab11 complex regulates the sorting of transferrin receptors from the degradative to the recycling pathway. We therefore propose that RCP functions primarily as a Rab11 binding protein that regulates protein sorting in tubular endosomes.  相似文献   
138.
The cyclic AMP-specific phosphodiesterase (PDE4) isoform PDE4A5 interacted with the immunophilin XAP2 in a yeast two-hybrid assay. The interaction was confirmed in biochemical pull-down analyses. The interaction was specific, in that PDE4A5 did not interact with the closely related immunophilins AIPL1, FKBP51, or FKBP52. XAP2 also did not interact with other PDE4A isoforms or typical isoforms from the three other PDE4 subfamilies. Functionally, XAP2 reversibly inhibited the enzymatic activity of PDE4A5, increased the sensitivity of PDE4A5 to inhibition by the prototypical PDE4 inhibitor 4-[3-(cyclopentyloxy)-4-methoxyphenyl]-2-pyrrolidinone (rolipram) and attenuated the ability of cAMP-dependent protein kinase to phosphorylate PDE4A5 in intact cells. XAP2 maximally inhibited PDE4A5 by approximately 60%, with an IC50 of 120 nm, and reduced the IC50 for rolipram from 390 nm to 70-90 nm. Co-expression of XAP2 and PDE4A5 in COS7 cells showed that they could be co-immunoprecipitated and also reduced both the enzymatic activity of PDE4A5 and its IC50 for rolipram. Native XAP2 and PDE4A5 could be co-immunoprecipitated from the brain. The isolated COOH-terminal half of XAP2 (amino acids 170-330), containing its tetratricopeptide repeat domain, but not the isolated NH2-terminal half (amino acids 1-169), containing the immunophilin homology region, similarly reduced PDE4A5 activity and its IC50 for rolipram. Mutation of Arg271 to alanine, in the XAP2 tetratricopeptide repeat region, attenuated its ability to both interact with PDE4A5 in two-hybrid assays and to inhibit PDE4A5 activity. Either the deletion of a specific portion of the unique amino-terminal region or specific mutations in the regulatory UCR2 domain of PDE4A5 attenuated its ability be inhibited by XAP2. We suggest that XAP2 functionally interacts with PDE4A5 in cells.  相似文献   
139.
SUMMARY: The high cost of genotyping single nucleotide polymorphisms (SNPs) generally prohibits the systematic mapping of entire genetic linkage regions in order to find the polymorphisms associated with increased risk of disease. In practice, SNPs are selected at approximately equal spacing across the linkage region to try to locate a SNP lying in the haplotype block of the disease SNP. The size of the haplotype block may not be known, however, and SNPs taken from public domain sources may not in fact be polymorphic. Our program will choose a subset of the SNPs in a linkage region so as to maximize the expected proportion of the sequence that lies within a given distance of a real SNP. AVAILABILITY: The software is available, free of charge, for academic use on request from the authors. SUPPLEMENTARY INFORMATION: www.oxagen.co.uk  相似文献   
140.
BACKGROUND: Male mating behavior of the nematode Caenorhabditis elegans offers an intriguing model to study the genetics of sensory behavior, cilia function, and autosomal dominant polycystic kidney disease (ADPKD). The C. elegans polycystins LOV-1 and PKD-2 act in male-specific sensory cilia required for response and vulva-location mating behaviors. RESULTS: Here, we identify and characterize a new mating mutant, sy511. sy511 behavioral phenotypes were mapped to a mutation in the klp-6 locus, a gene encoding a member of the kinesin-3 family (previously known as the UNC-104/Kif1A family). KLP-6 has a single homolog of unknown function in vertebrate genomes, including fish, chicken, mouse, rat, and human. We show that KLP-6 expresses exclusively in sensory neurons with exposed ciliated endings and colocalizes with the polycystins in cilia of male-specific neurons. Cilia of klp-6 mutants appear normal, suggesting a defect in sensory neuron function but not development. KLP-6 structure-function analysis reveals that the putative cargo binding domain directs the motor to cilia. Consistent with a motor-cargo association between KLP-6 and the polycystins, klp-6 is required for PKD-2 localization and function within cilia. Genetically, we find klp-6 regulates behavior through polycystin-dependent and -independent pathways. CONCLUSION: Multiple ciliary transport pathways dependent on kinesin-II, OSM-3, and KLP-6 may act sequentially to build cilia and localize sensory ciliary membrane proteins such as the polycystins. We propose that KLP-6 and the polycystins function as an evolutionarily conserved ciliary unit. KLP-6 promises new routes to understanding cilia function, behavior, and ADPKD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号