首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   2篇
  26篇
  2020年   1篇
  2017年   2篇
  2015年   2篇
  2014年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1985年   1篇
  1982年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
11.
The suspension-feeding slippersnail Crepidula convexa is commonly associated with hermit crabs (Pagurus longicarpus) living in periwinkle shells (Littorina littorea) at our study site in Nahant, MA, USA. In 15 field surveys conducted at Nahant in 2000, 2001 and 2003, we found that (1) more than 61.8% of individuals of C. convexa resided on shells occupied by hermit crabs, as opposed to the shells of live periwinkles, empty periwinkle shells or other solid substrates; (2) an average of 8.3% of hermit crabs carried at least one individual of C. convexa; and (3) 39.1-75.0% of hermit crabs carrying C. convexa were carrying “large” individuals (snails with wet weight >10% of the weight of the periwinkle shells they occupied). However, it is unlikely that individuals of C. convexa seek out shells occupied by hermit crabs to colonize, and they showed no preference for empty periwinkle shells over other solid substrates in the laboratory. Moreover, in the laboratory the hermit crabs preferentially occupied intact shells bearing individuals of C. convexa only when the alternatives were shells that had been drilled by naticid snails. Thus, neither party preferentially associates with the other: rather, extensive predation by naticid snails on periwinkles at Nahant appears to limit the availability of suitable shells for the hermit crabs, forcing them to inhabit shells bearing “large” individuals of C. convexa. Individuals of C. convexa may benefit from this inadvertent association with hermit crabs: by facilitating snail dispersal, transport by hermit crabs should reduce the potential for inbreeding, an important consideration for a species that lacks free-living larvae in its life history.  相似文献   
12.
Abstract. Certain stresses experienced by marine larvae from many groups can dramatically reduce aspects of juvenile performance. This study reports the effects of delayed metamorphosis and nutritional stress on survival and growth of the deposit-feeding sipunculan Apionsoma (= Golfingia ) misakianum . Approximately 600 larvae collected from the Florida Current plankton were distributed among 3 treatment groups. Ninety larvae (controls) were offered sediment and adult-conditioned seawater 4 d after collection, to induce metamorphosis; larvae of this species could not be induced to metamorphose by increasing the K+ concentration of seawater. The remaining 500 larvae were kept swimming for either 2 or 4 weeks, with or without phyto-plankton (clone T-ISO). At the end of the periods of prolonged larval swimming, subsampled larvae (360) were induced to metamorphose as in the controls. Surviving individuals were retrieved 6 weeks after the addition of excess sediment in all treatments, and weighed to document growth. Neither delayed metamorphosis nor starvation influenced juvenile survival. However, starving larvae for 2 weeks significantly reduced mean juvenile growth rates relative to the mean growth rate of control individuals (p<0.0001), while prolonging larval life by 4 weeks significantly reduced mean juvenile growth rates (p<0.05) whether or not larvae were fed. Reduced juvenile growth rates may have been caused by nutritional stress experienced by larvae in both the starved and fed treatments. The rapid response of freshly collected larvae to sediment indicates that competent larvae of this species routinely delay metamorphosis in the field. The extent to which they also experience food limitation is not yet clear. If competent larvae are food limited while delaying metamorphosis in the field, our results suggest that juveniles will grow more slowly and may thus exhibit reduced fitness.  相似文献   
13.
Marine larvae that experience some sub-lethal stresses can show effects from those stresses after metamorphosis, even when they seem to recover from those stresses before metamorphosis. In this study we investigated the short and long-term effects of exposing the larvae of three calyptraeid gastropods (Crepidula fornicata, Crepidula onyx, and Crepipatella fecunda) to temporary reductions in salinity. Larvae of all three species showed slower larval growth rates, longer time to metamorphic competence, and substantial mortality after being stressed in seawater at salinities of 10, 15, and 20 for less than 48 h. Larval tolerance to low salinities varied widely within and among species, but longer stresses at lower salinities were generally more harmful to larvae. However, larvae in nearly all experiments that were able to metamorphose survived and grew normally as juveniles; there were no documented “latent effects.” For all three species, starving larvae in full-strength seawater was not as harmful as exposing larvae to low salinity stress, indicating that detrimental effects on larvae were caused by the salinity stress per se, rather than by an indirect effect of salinity stress on feeding. C. fornicata that were stressed with low salinity as juveniles were more tolerant of the stress than larvae: all stressed juveniles lived and showed reduced growth rates for no more than 3 days. Our data suggest that even though reduced salinity is clearly stressful to the larvae of these 3 gastropod species, metamorphosis seems to generally provide individuals with a fresh start.  相似文献   
14.
The primitive pulmonate snail Amphibola crenata embeds embryos within a smooth mud collar on exposed estuarine mudflats in New Zealand. Development through hatching of free-swimming veliger larvae was monitored at 15 salinity and temperature combinations covering the range of 2-30 ppt salinity and 15-25 °C. The effect of exposure to air on developmental rate was also assessed. There were approximately 18,000 embryos in each egg collar. The total number of veligers released from standard-sized egg collar fragments varied with both temperature and salinity: embryonic survival was generally higher at 15 and 20 °C than at 25 °C; moreover, survival was generally highest at intermediate salinities, and greatly reduced at 2 ppt salinity regardless of temperature. Even at 2 ppt salinity, however, about one-third of embryos were able to develop successfully to hatching. Embryonic tolerance to low salinity was apparently a property of the embryos themselves, or of the surrounding egg capsules; there was no indication that the egg collars protected embryos from exposure to environmental stress. Mean hatching times ranged between 7 and 22 days, with reduced developmental rates both at lower temperature and lower salinity. At each salinity tested, developmental rate to hatching was similar at 20 and 25 °C. At 15 °C, time to hatching was approximately double that recorded at the two higher exposure temperatures. Exposing the egg collars to air for 6-9 h each day at 20 °C (20 ppt salinity) accelerated hatching by about 24 h, suggesting that developmental rate in this species is limited by the rates at which oxygen or wastes can diffuse into and from intact collars, respectively. Similarly, veligers from egg capsules that were artificially separated from egg collars at 20 °C developed faster than those within intact egg collars. The remarkable ability of embryos of A. crenata to hatch over such a wide range of temperatures and salinities, and to tolerate a considerable degree of exposure to air, explains the successful colonization of this species far up into New Zealand estuaries.  相似文献   
15.
Disproportionately large feeding structures have been used to infer food limitation in some marine invertebrate larvae, but few studies have investigated whether other factors alter larval morphology in similar ways. In this study, larvae of Crepidula fornicata were reared either at five different food concentrations of Isochrysis galbana (clone T-ISO) at a single temperature (22 degrees C) (Experiments I and II); or on three different phytoplankton species (Isochrysis galbana, Dunaliella tertiolecta, and Pavlova lutheri) at both high and low concentrations at a single temperature (22 degrees C) (Experiment III); or at high and low concentrations of Isochrysis galbana at four different temperatures between 16 and 25 degrees C (Experiment IV). Shell lengths and velar lobe dimensions were determined for individual larvae at intervals to monitor relative rates of velar and shell growth. In addition (Experiment V), fast growing and slow growing larvae in Experiment I were examined separately to determine whether velar lobes developed at similar rates (relative to shell growth) for fast and slow growing larvae within individual cultures. In general, velar lobes grew significantly larger, relative to shell length, when larvae were reared at low food concentrations (P<0.0001); for larvae of similar shell length, the velar lobes of those fed 1x10(4) cells ml(-1) were on average 17.7% larger than those of larvae fed 18x10(4) cells ml(-1) of T-ISO. In contrast, larvae fed different phytoplankton species at equivalently high food concentrations did not differ in relative velum size (P=0.2666), even though shell growth rates differed significantly for larvae raised on the different diets, indicating substantial variation in food quality. We also found that relative rates of velum and shell growth differed among fast and slow growing individuals within treatments. Temperature had no significant effect on relative rates of velar and shell growth within the 16-25 degrees C range tested (P=0.121), but may have altered the relationship between food concentration and relative velar growth. These results indicate that dramatically reduced food concentration induces disproportionate growth in the velar lobes of C. fornicata, but that interpretation of data from field-collected individuals of this species will be made difficult by the potentially confounding effects of temperature, food quality, and differences in individual growth potential. Assessments of food limitation using morphological measurements for field-collected larvae will need to be supplemented with other indicators before convincing conclusions about the extent of food limitation in C. fornicata can be drawn.  相似文献   
16.
Shallow-water coastal areas suffer frequent reductions in salinity due to heavy rains, potentially stressing the organisms found there, particularly the early stages of development (including pelagic larvae). Individual adults and newly hatched larvae of the gastropod Crepipatella peruviana were exposed to different levels of salinity stress (32(control), 25, 20 or 15), to quantify the immediate effects of exposure to low salinities on adult and larval behavior and on the physiological performance of the larvae. For adults we recorded the threshold salinity that initiates brood chamber isolation. For larvae, we measured the impact of reduced salinity on velar surface area, velum activity, swimming velocity, clearance rate (CR), oxygen consumption (OCR), and mortality (LC50); we also documented the impact of salinity discontinuities on the vertical distribution of veliger larvae in the water column. The results indicate that adults will completely isolate themselves from the external environment by clamping firmly against the substrate at salinities ≤24. Moreover, the newly hatched larvae showed increased mortality at lower salinities, while survivors showed decreased velum activity, decreased exposed velum surface area, and decreased mean swimming velocity. The clearance rates and oxygen consumption rates of stressed larvae were significantly lower than those of control individuals. Finally, salinity discontinuities affected the vertical distribution of larvae in the water column. Although adults can protect their embryos from low salinity stress until hatching, salinities <24 clearly affect survival, physiology and behavior in early larval life, which will substantially affect the fitness of the species under declining ambient salinities.  相似文献   
17.
18.
Encapsulation of developing embryos imposes potential restrictions, because the capsule wall must allow for adequate inward diffusion of oxygen and for increased diffusion of oxygen as metabolic demand increases with continued development. Samples of egg capsules from the gastropod Crepipatella dilatata were used to document surface characteristics, composition of the different capsule wall layers, and alterations in wall thickness during development. The diffusion coefficient and capsule wall permeability were determined experimentally for capsules containing embryos at different developmental stages. We also determined oxygen consumption rates for various embryonic stages and for nurse eggs, which provide food for embryos during development. The capsule wall of C. dilatata possesses 2 differentiated layers: the external capsular wall (ECW) and the internal capsular wall (ICW). The ECW is compact and fibrous, features that remain invariable during development, and lacks surface features that might make some portions of the capsule wall more permeable to oxygen than others. On the other hand, the ICW is initially spongy and thick, but significantly decreases in thickness over time, particularly before the embryos begin feeding on nurse eggs. Although the capsule wall is a serious barrier to diffusion, permeability to oxygen increases over time by 112% due to the dramatic thinning of the inner capsule wall layer. Nurse eggs consume oxygen but at very low rates, supporting the idea that they correspond to living embryonic cells that have stopped their development. Respiration measurements indicated that embryos are initially supplied with enough oxygen within the egg capsules to carry out the activities characteristic of embryogenesis, even though the capsular walls show their maximum thickness and lowest permeability at this time. However, as the embryo develops its velum and becomes more active, capsule wall thickness decreases and capsule permeability to oxygen increases. Correspondingly, the oxygen demands of metamorphosed but still encapsulated specimens are approximately 135% higher than those of pre-metamorphosed sibling embryos.  相似文献   
19.
Ambient salinities drop dramatically during monsoon season in Hong Kong coastal waters, posing a number of problems for externally fertilizing species like the polychaete Hydroides elegans. In this study, we investigated (1) whether adults would retain their gametes when external salinity dropped to levels too low to support fertilization and development, and (2) whether failure of development at low salinity reflects a failure of fertilization or a failure of fertilized eggs to cleave. Adults released eggs and sperm in the laboratory even at the lowest salinity tested, a practical salinity (S) of 5, and yet very few eggs cleaved at salinities below about 22. By mixing gametes at high salinity and then transferring the fertilized eggs to low-salinity seawater, we found that salinities below about 22 reduced the percentage of fertilized eggs that cleaved. Similarly, mixing gametes at salinities as low as 15 and then transferring the eggs to full-strength seawater (S = 30) rescued a substantial number of eggs, many more of which cleaved after their transfer to the higher salinity. The results suggest that failure of early development at low salinity in this species in large part reflects an inability of newly fertilized eggs to complete meiosis and cleave, rather than simply a failure of fertilization.  相似文献   
20.
The relationship between rate of larval development and the potential to prolong larval life was examined for larvae of the marine prosobranch gastropod Crepidula plana Say. Larvae were maintained in clean glass dishes at constant temperatures ranging from 12–29°C and fed either Isochrysis galbana Parke (ISO) or a Tahitian strain of Isochrysis species (T-ISO). Under all conditions, larvae grew at constant rates, as determined by measurements of shell length and tissue biomass. Most larvae eventually underwent spontaneous metamorphosis. Regardless of temperature, faster growth was associated with a shorter planktonic stage prior to spontaneous metamorphosis. Within an experiment, higher temperatures generally accelerated growth rates and reduced the number of days from hatching to spontaneous metamorphosis. However, growth rates were independent of temperature for larvae fed ISO at 25 and 29°C and for larvae fed T-ISO at 20 and 25°C. Where growth rates were unaffected by temperature, time to spontaneous metamorphosis was similarly unaffected. Maximum durations of larval life at a given temperature were shorter for larvae of Crepidula plana than for those of the congener C. fornicata (L.), although both species grew at comparable rates. Interpretations of the ecological significance of these interspecific differences in delay capabilities will require additional data on adult distributions and larval dispersal patterns in the field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号