全文获取类型
收费全文 | 22178篇 |
免费 | 1517篇 |
国内免费 | 988篇 |
专业分类
24683篇 |
出版年
2024年 | 53篇 |
2023年 | 295篇 |
2022年 | 631篇 |
2021年 | 1014篇 |
2020年 | 675篇 |
2019年 | 900篇 |
2018年 | 889篇 |
2017年 | 679篇 |
2016年 | 958篇 |
2015年 | 1335篇 |
2014年 | 1511篇 |
2013年 | 1752篇 |
2012年 | 1949篇 |
2011年 | 1819篇 |
2010年 | 1016篇 |
2009年 | 907篇 |
2008年 | 1012篇 |
2007年 | 928篇 |
2006年 | 845篇 |
2005年 | 724篇 |
2004年 | 632篇 |
2003年 | 526篇 |
2002年 | 475篇 |
2001年 | 309篇 |
2000年 | 320篇 |
1999年 | 282篇 |
1998年 | 174篇 |
1997年 | 161篇 |
1996年 | 181篇 |
1995年 | 162篇 |
1994年 | 136篇 |
1993年 | 102篇 |
1992年 | 151篇 |
1991年 | 150篇 |
1990年 | 124篇 |
1989年 | 97篇 |
1988年 | 98篇 |
1987年 | 101篇 |
1986年 | 70篇 |
1985年 | 89篇 |
1984年 | 50篇 |
1983年 | 53篇 |
1982年 | 27篇 |
1981年 | 26篇 |
1980年 | 24篇 |
1979年 | 35篇 |
1978年 | 28篇 |
1977年 | 20篇 |
1975年 | 29篇 |
1974年 | 21篇 |
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
172.
173.
174.
The Influence of Selenium on Root Growth and Oxidative Stress Induced by Lead in Vicia faba L. minor Plants 总被引:1,自引:0,他引:1
The effect of selenium (Se) on Vicia faba L. minor roots subjected to lead (Pb) stress was studied by investigating root growth, root viability, and antioxidant enzyme activity. The experiments were carried out on plants grown for 2 weeks on Hoagland medium supplied with 50 μM Pb in the form of lead nitrate Pb(NO(3))(2) and/or Se concentrations of 1.5 and 6 μM in the form of sodium selenite Na(2)SeO(3). It was shown that Pb reduced the root growth and caused serious damage in the roots, which was accompanied by metal accumulation in these tissues. The exposition of roots to Pb led to significant changes in the biochemical parameters: the MDA and T-SH content and glutathione peroxidase (GSH-Px) activity increased but the guaiacol peroxidase (GPOX) activity decreased. Moreover, Pb intensified O(2)(·-) production in the roots. Selenium at a lower concentration alleviated Pb toxicity which was accompanied by a decreased O(2)(·-) production in the apical parts of roots and increased the T-SH content and GPOX activity. However, higher Se concentration intensified MDA and T-SH accumulation and GPOX and GSH-Px activity in Pb-treated plant roots. At low concentration, Se improved cell viability whereas at high concentration it was pro-oxidant and enhanced the lipid peroxidation and cell membrane injury. 相似文献
175.
An oscillator consisting of KaiA, KaiB, and KaiC proteins comprises the core of cyanobacterial circadian clock. While one key reaction in this process-KaiC phosphorylation-has been extensively investigated and modeled, other key processes, such as the interactions among Kai proteins, are not understood well. Specifically, different experimental techniques have yielded inconsistent views about Kai A, B, and C interactions. Here, we first propose a mathematical model of cyanobacterial circadian clock that explains the recently observed dynamics of the four phospho-states of KaiC as well as the interactions among the three Kai proteins. Simulations of the model show that the interaction between KaiB and KaiC oscillates with the same period as the phosphorylation of KaiC, but displays a phase delay of ~8 hr relative to the total phosphorylated KaiC. Secondly, this prediction on KaiB-C interaction are evaluated using a novel FRET (Fluorescence Resonance Energy Transfer)-based assay by tagging fluorescent proteins Cerulean and Venus to KaiC and KaiB, respectively, and reconstituting fluorescent protein-labeled in vitro clock. The data show that the KaiB∶KaiC interaction indeed oscillates with ~24 hr periodicity and ~8 hr phase delay relative to KaiC phosphorylation, consistent with model prediction. Moreover, it is noteworthy that our model indicates that the interlinked positive and negative feedback loops are the underlying mechanism for oscillation, with the serine phosphorylated-state (the "S-state") of KaiC being a hub for the feedback loops. Because the kinetics of the KaiB-C interaction faithfully follows that of the S-state, the FRET measurement may provide an important real-time probe in quantitative study of the cyanobacterial circadian clock. 相似文献
176.
177.
In the screening of 11 E. coli strains overexpressing recombinant oxidoreductases from Bacillus sp. ECU0013, an NADPH-dependent aldo-keto reductase (YtbE) was identified with capability of producing chiral alcohols. The
protein (YtbE) was overexpressed, purified to homogeneity, and characterized of biocatalytic properties. The purified enzyme
exhibited the highest activity at 50°C and optimal pH at 6.5. YtbE served as a versatile reductase showing a broad substrate
spectrum towards different aromatic ketones and keto esters. Furthermore, a variety of carbonyl substrates were asymmetrically
reduced by the purified enzyme with an additionally coupled NADPH regeneration system. The reduction system exhibited excellent
enantioselectivity (>99% ee) in the reduction of all the aromatic ketones and high to moderate enantioselectivity in the reduction of α- and β-keto esters.
Among the ketones tested, ethyl 4,4,4-trifluoroacetoacetate was found to be reduced to ethyl (R)-4,4,4-trifluoro-3-hydroxy butanoate, an important pharmaceutical intermediate, in excellent optical purity. To the best
of our knowledge, this is the first report of ytbE gene-encoding recombinant aldo-keto reductase from Bacillus sp. used as biocatalyst for stereoselective reduction of carbonyl compounds. This study provides a useful guidance for further
application of this enzyme in the asymmetric synthesis of chiral alcohol enantiomers. 相似文献
178.
Juying Jiao Joseph Tzanopoulos Panteleimon Xofis Wenjuan Bai Xianghua Ma Jonathan Mitchley 《Restoration Ecology》2007,15(3):391-399
In the Loess Plateau, China, arable cultivation of slope lands is common and associated with serious soil erosion. Planting trees or grass may control erosion, but planted species may consume more soil water and can threaten long‐term ecosystem sustainability. Natural vegetation succession is an alternative ecological solution to restore degraded land, but there is a time cost, given that the establishment of natural vegetation, adequate to prevent soil erosion, is a longer process than planting. The aims of this study were to identify the environmental factors controlling the type of vegetation established on abandoned cropland and to identify candidate species that might be sown soon after abandonment to accelerate vegetation succession and establishment of natural vegetation to prevent soil erosion. A field survey of thirty‐three 2 × 2–m plots was carried out in July 2003, recording age since abandonment, vegetation cover, and frequency of species together with major environmental and soil variables. Data were analyzed using correspondence analysis, classification tree analysis, and species response curves. Four vegetation types were identified and the data analysis confirmed the importance of time since abandonment, total P, and soil water in controlling the type of vegetation established. Among the dominant species in the three late‐successional vegetation types, the most appropriate candidates for accelerating and directing vegetation succession were King Ranch bluestem (Bothriochloa ischaemum) and Lespedeza davurica (Leguminosae). These species possess combinations of the following characteristics: tolerance of low water and nutrient availability, fibrous root system and strong lateral vegetative spread, and a persistent seed bank. 相似文献
179.
Effects of tetrandrine on apoptosis and radiosensitivity of nasopharyngeal carcinoma cell line CNE 总被引:1,自引:0,他引:1
180.
T Ishii M Nishihara F Ma Y Ebihara K Tsuji S Asano T Nakahata T Maekawa 《Journal of immunology (Baltimore, Md. : 1950)》1999,163(7):3612-3620
We found that the stromal cell-derived factor-1/pre-B cell growth-stimulating factor receptor, CXC chemokine receptor 4 (CXCR4), is expressed on human CD34+ bone marrow (BM) cells. Stringently FACS-sorted CD34+CXCR4+ BM cells completely lack myeloid, erythroid, megakaryocytic, and mixed colony-forming potential (myeloid progenitors), but give rise to B and T lymphoid progenitors, whereas CD34+CXCR4- BM cells can generate colonies formed by myeloid progenitors and can also develop into these lymphoid progenitors. Therefore, expression of CXCR4 on CD34+ BM cells can allow lymphoid progenitors to be discriminated from myeloid progenitors. Because CD34+CXCR4+ cells are differentiated from CD34+CXCR4- cells, multipotential progenitors located in the BM are likely to be negative for CXCR4 expression. CXCR4 seems to be expressed earlier than the IL-7R and terminal deoxynucleotidyl transferase during early lymphohemopoiesis. These results suggest that the expression of CXCR4 on CD34+ BM cells is one of the phenotypic alterations for committed lymphoid progenitors. 相似文献