首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5324篇
  免费   178篇
  国内免费   1篇
  2023年   4篇
  2022年   2篇
  2021年   14篇
  2020年   8篇
  2019年   9篇
  2018年   23篇
  2017年   20篇
  2016年   38篇
  2015年   42篇
  2014年   48篇
  2013年   54篇
  2012年   432篇
  2011年   534篇
  2010年   101篇
  2009年   84篇
  2008年   517篇
  2007年   520篇
  2006年   506篇
  2005年   450篇
  2004年   422篇
  2003年   410篇
  2002年   360篇
  2001年   254篇
  2000年   303篇
  1999年   160篇
  1998年   28篇
  1997年   14篇
  1996年   9篇
  1995年   9篇
  1994年   9篇
  1993年   11篇
  1992年   10篇
  1991年   9篇
  1990年   6篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1983年   5篇
  1982年   6篇
  1980年   2篇
  1978年   4篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
  1972年   5篇
  1971年   7篇
  1970年   9篇
  1969年   5篇
  1968年   8篇
排序方式: 共有5503条查询结果,搜索用时 15 毫秒
51.
The mode of action of xylanase A from a phytopathogenic bacterium, Erwinia chrysanthemi, classified in glycoside hydrolase family 5, was investigated on xylooligosaccharides and polysaccharides using TLC, MALDI-TOF MS and enzyme treatment with exoglycosidases. The hydrolytic action of xylanase A was found to be absolutely dependent on the presence of 4-O-methyl-D-glucuronosyl (MeGlcA) side residues in both oligosaccharides and polysaccharides. Neutral linear beta-1,4-xylooligosaccharides and esterified aldouronic acids were resistant towards enzymatic action. Aldouronic acids of the structure MeGlcA(3)Xyl(3) (aldotetraouronic acid), MeGlcA(3)Xyl(4) (aldopentaouronic acid) and MeGlcA(3)Xyl(5) (aldohexaouronic acid) were cleaved with the enzyme to give xylose from the reducing end and products shorter by one xylopyranosyl residue: MeGlcA(2)Xyl(2), MeGlcA(2)Xyl(3) and MeGlcA(2)Xyl(4). As a rule, the enzyme attacked the second glycosidic linkage following the MeGlcA branch towards the reducing end. Depending on the distribution of MeGlcA residues on the glucuronoxylan main chain, the enzyme generated series of shorter and longer aldouronic acids of backbone polymerization degree 3-14, in which the MeGlcA is linked exclusively to the second xylopyranosyl residue from the reducing end. Upon incubation with beta-xylosidase, all acidic hydrolysis products of acidic oligosaccharides and hardwood glucuronoxylans were converted to aldotriouronic acid, MeGlcA(2)Xyl(2). In agreement with this mode of action, xylose and unsubstituted oligosaccharides were essentially absent in the hydrolysates. The E. chrysanthemi xylanase A thus appears to be an excellent biocatalyst for the production of large acidic oligosaccharides from glucuronoxylans as well as an invaluable tool for determination of the distribution of MeGlcA residues along the main chain of this major plant hemicellulose.  相似文献   
52.
NADH dehydrogenase activity was characterized in the mitochondrial lysates of Phytomonas serpens, a trypanosomatid flagellate parasitizing plants. Two different high molecular weight NADH dehydrogenases were characterized by native PAGE and detected by direct in-gel activity staining. The association of NADH dehydrogenase activities with two distinct multisubunit complexes was revealed in the second dimension performed under denaturing conditions. One subunit present in both complexes cross-reacted with the antibody against the 39 kDa subunit of bovine complex I. Out of several subunits analyzed by MS, one contained a domain characteristic for the LYR family subunit of the NADH:ubiquinone oxidoreductases. Spectrophotometric measurement of the NADH:ubiquinone 10 and NADH:ferricyanide dehydrogenase activities revealed their different sensitivities to rotenone, piericidin, and diphenyl iodonium.  相似文献   
53.
Human glutamate carboxypeptidase II [GCPII (EC 3.4.17.21)] is recognized as a promising pharmacological target for the treatment and imaging of various pathologies, including neurological disorders and prostate cancer. Recently reported crystal structures of GCPII provide structural insight into the organization of the substrate binding cavity and highlight residues implicated in substrate/inhibitor binding in the S1' site of the enzyme. To complement and extend the structural studies, we constructed a model of GCPII in complex with its substrate, N-acetyl-l-aspartyl-l-glutamate, which enabled us to predict additional amino acid residues interacting with the bound substrate, and used site-directed mutagenesis to assess the contribution of individual residues for substrate/inhibitor binding and enzymatic activity of GCPII. We prepared and characterized 12 GCPII mutants targeting the amino acids in the vicinity of substrate/inhibitor binding pockets. The experimental results, together with the molecular modeling, suggest that the amino acid residues delineating the S1' pocket of the enzyme (namely Arg210) contribute primarily to the high affinity binding of GCPII substrates/inhibitors, whereas the residues forming the S1 pocket might be more important for the 'fine-tuning' of GCPII substrate specificity.  相似文献   
54.
A rapid and simple method for quantitation of metformin (MET) in human plasma by HPLC-MS/MS was developed and validated. The sample preparation consists of plasma deproteinization using acetonitrile. The mobile phase consisted of water-acetonitrile and formic acid (55/45/0.048, v/v/%) and the run time was 3 min. A pursuit C(18) (100 mm x 2.0 mm i.d., 3 microm) column connected to a guard column MS-pursuit (0.20 mm x 0.20 mm i.d., 5 microm) was used. The range of the calibration curve was from 20 to 5000 ng/mL, the limit of quantitation being 20 ng/mL. The detection was performed on a mass spectrometer (ESI+), using metoprolol as internal standard. The calibration curves have r(2) values of 0.995 (CV=0.24%, n=10). The accuracy and precision were between 90.74 and 106.7% and coefficients of variations (CV) of 1.10 and 4.35%, respectively. The method was applied to determine the pharmacokinetic parameters: C(max) (1667.25 ng/mL) and T(max) (3.89 h).  相似文献   
55.
Reversed-phase high-performance liquid radio-chromatography (radio-HPLC) was set up to detect the time course of labeled degradation product formation of the pentapeptide H-Tyr-Asp-Pro-Ala-Pro-OH (5P), which has oostatic effects in different insect species. The detection limit of the system was in the range of 80-150 Bq. To follow formation of the degradation products, three amino acid residues in 5P were independently tritiated: Tyr1, Pro3 and Pro5. Each of the three tritiated peptides was analyzed after incubation with fresh hemolymph or ovaries of Neobellieria bullata. In the incubation mixture, free terminal amino acids and shortened sequences of 5P were identified. A metabolite of tyrosine represented the only exception; it was finally identified as water using degradation of [3H]Tyr by tyrosinase. Metabolic degradation of [3H]Tyr-5P was found to be considerably quicker than that of H-[3H]Tyr-Asp-Pro-Ala-OH (4P). The degradation of 5P was considerably slower in ovaries in comparison to hemolymph.  相似文献   
56.
Phage 812 is a polyvalent phage with a very broad host range in the genus Staphylococcus, which makes it a suitable candidate for phage therapy of staphylococcal infections. This proteomic study, combining the results of both 1-DE and 2-DE followed by PMF, led to the identification of 24 virion proteins. Twenty new proteins, not yet identified by proteome analysis of closely related staphylococcal phages K and G1 were identified using this approach. Fifteen proteins were assigned unambiguously to the head-tail genome module; the remaining nine proteins are encoded by genes of the left or right arms of the phage genome. As expected, the most abundant proteins in the electrophoretic patterns are the major capsid protein, the major tail sheath protein and proteins identical to ORF 50 and ORF 95 of phage K, although their function is only putative. Identification of these 20 new proteins contributes substantially to a detailed characterization of phage virions, knowledge of which is necessary for rational phage therapy.  相似文献   
57.
Caspases in yeast apoptosis-like death: facts and artefacts   总被引:3,自引:0,他引:3  
Various findings suggest that programmed cell death (PCD) is induced in yeast as a response to the impact of a deleterious environment and/or an intracellular defect. Moreover, the specifically localized PCD within multicellular colonies seems to be important for the safe degradation of cell subpopulations to simple compounds that can be used as nutrients by healthy survivors occurring in propitious colony areas, being thus important for proper development and survival of the yeast population. In spite of this, the question remains whether yeast dies by real apoptosis, i.e. death involving caspases, or by other kinds of PCD. A large group of mammalian caspases includes those that are responsible for monitoring of the stimulus and initiating the dying process, as well as those involved in the execution of death. Additionally, paracaspases and metacaspases, that share some homology with real caspases, but possibly differ in substrate specificity, have been identified in plants, fungi, Dictyostelium and metazoa. In yeast, one homologue of caspases, metacaspase Mca1p/Yca1p, has been identified so far, although there are several indications of the presence of other caspase-like activities in yeast. In this minireview, we summarize various data on the possible involvement of Mca1p and other caspase-like activities in yeast PCD.  相似文献   
58.
This study was undertaken to investigate the effects of both nitrogen (N) and potassium (K) rates on rice resistance to brown spot, caused by the fungus Bipolaris oryzae. Rice plants (cultivar ‘Metica 1’) were grown in soil corrected with 0, 25, 50, 75 and 100 mg of N / kg (as NH4NO3) of soil as well as with 25, 50, 75, 125 and 150 mg of K / kg (as KCl) of soil. Thirty‐three‐day‐old plants were inoculated with a suspension of Bipolaris oryzae conidia and the incubation period (IP), number of lesions (NL) per cm2 of leaf area and disease severity was evaluated. Disease severity was scored at 24, 48, 72, 96, 120 and 144 h after inoculation and data were used to obtain the area under brown spot progress curve (AUBSPC). Soil plant analysis development (SPAD) index, plant dry weight and concentration of N and K in leaf tissues were also determined for both non‐inoculated (NI) and inoculated (IN) plants. Concentration of N in leaf tissue increased as the N rates in the soil increased. Concentration of K in leaf tissue increased sharply as the K rates in the soil increased for both NI and IN plants. Concentration of K in leaf tissue was not affected by N rates. The IP increased as the N rates increased, but was somewhat less impacted by increasing K rates. The NL decreased as the N rates increased. The NL dramatically declined at the highest K rates. The AUBSPC dramatically declined as the N and K rates in the soil increased. SPAD index values increased as the N and K rates in the soil increased for both NI and IN plants. Plant dry weight increased as the N and K rates in the soil increased for both NI and IN plants. Results from this study suggest that combining high N and K rates may contribute to reducing the intensity of brown spot in rice while improving plant development.  相似文献   
59.
The ability of the four-stranded guanine (G)-DNA motif to incorporate nonstandard guanine analogue bases 6-oxopurine (inosine, I), 6-thioguanine (tG), and 6-thiopurine (tI) has been investigated using large-scale molecular dynamics simulations. The simulations suggest that a G-DNA stem can incorporate inosines without any marked effect on its structure and dynamics. The all-inosine quadruplex stem d(IIII)(4) shows identical dynamical properties as d(GGGG)(4) on the nanosecond time scale, with both molecular assemblies being stabilized by monovalent cations residing in the channel of the stem. However, simulations carried out in the absence of these cations show dramatic differences in the behavior of d(GGGG)(4) and d(IIII)(4). Whereas vacant d(GGGG)(4) shows large fluctuations but does not disintegrate, vacant d(IIII)(4) is completely disrupted within the first nanosecond. This is a consequence of the lack of the H-bonds involving the N2 amino group that is not present in inosine. This indicates that formation of the inosine quadruplex could involve entirely different intermediate structures than formation of the guanosine quadruplex, and early association of cations in this process appears to be inevitable. In the simulations, the incorporation of 6-thioguanine and 6-thiopurine sharply destabilizes four-stranded G-DNA structures, in close agreement with experimental data. The main reason is the size of the thiogroup leading to considerable steric conflicts and expelling the cations out of the channel of the quadruplex stem. The G-DNA stem can accommodate a single thioguanine base with minor perturbations. Incorporation of a thioguanine quartet layer is associated with a large destabilization of the G-DNA stem whereas the all-thioguanine quadruplex immediately collapses.  相似文献   
60.
p-Nitrophenyl 6-O-acetyl-2-acetamido-2-deoxy-beta-D-glucopyranoside (5a) was used as the glycosyl donor in a beta-N-acetylhexosaminidase-catalysed (from Penicillium brasilianum) glycosylation of GlcNAc yielding 6'-O,N,N'-triacetylchitobiose (6), while 6-O-acetyl-2-acetamido-2-deoxy-beta-D-glucopyranose (3a) served as a selectively protected acceptor in a transglycosylation reaction catalysed by the same enzyme to yield 6-O,N,N'-triacetylchitobiose (4).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号