首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   90篇
  国内免费   1篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   3篇
  2018年   7篇
  2017年   3篇
  2016年   3篇
  2015年   8篇
  2014年   7篇
  2013年   20篇
  2012年   21篇
  2011年   17篇
  2010年   13篇
  2009年   14篇
  2008年   22篇
  2007年   19篇
  2006年   16篇
  2005年   11篇
  2004年   13篇
  2003年   16篇
  2002年   8篇
  2001年   17篇
  2000年   13篇
  1999年   12篇
  1998年   10篇
  1997年   5篇
  1996年   7篇
  1995年   5篇
  1994年   6篇
  1993年   9篇
  1992年   16篇
  1991年   8篇
  1990年   7篇
  1989年   8篇
  1988年   5篇
  1987年   6篇
  1986年   5篇
  1985年   5篇
  1984年   3篇
  1983年   5篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   4篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
排序方式: 共有403条查询结果,搜索用时 15 毫秒
51.
Multiple signalling pathways maintain human embryonic stem cells (hESC) in an undifferentiated state. Here we sought to define the significance of G protein signal transduction in the preservation of this state distinct from other cellular processes. Continuous treatment with drugs targeting G(αs)-, G(α-i/o)- and G(α-q/11)-subunit signalling mediators were assessed in independent hESC lines after 7days to discern effects on normalised alkaline phosphatase positive colony frequency vs total cell content. This identified PLCβ, intracellular free calcium and CAMKII kinase activity downstream of G(α-q/11) as of particular importance to the former. To confirm the significance of this finding we generated an agonist-responsive hESC line transgenic for a G(α-q/11) subunit-coupled receptor and demonstrated that an undifferentiated state could be promoted in the presence of an agonist without exogenously supplied bFGF and that this correlated with elevated intracellular calcium. Similarly, treatment of unmodified hESCs with a range of intracellular free calcium-modulating drugs in biologically defined mTESR culture system lacking exogenous bFGF promoted an hESC phenotype after 1week of continuous culture as defined by co-expression of OCT4 and NANOG. At least one of these drugs, lysophosphatidic acid significantly elevates phosphorylation of calmodulin and STAT3 in this culture system (p<0.05). These findings substantiate a role for G-protein and calcium signalling in undifferentiated hESC culture.  相似文献   
52.
Phosphorylation sites are formed by protein kinases ('writers'), frequently exert their effects following recognition by phospho-binding proteins ('readers') and are removed by protein phosphatases ('erasers'). This writer-reader-eraser toolkit allows phosphorylation events to control a broad range of regulatory processes, and has been pivotal in the evolution of new functions required for the development of multi-cellular animals. The proteins that comprise this system of protein kinases, phospho-binding targets and phosphatases are typically modular in organization, in the sense that they are composed of multiple globular domains and smaller peptide motifs with binding or catalytic properties. The linkage of these binding and catalytic modules in new ways through genetic recombination, and the selection of particular domain combinations, has promoted the evolution of novel, biologically useful processes. Conversely, the joining of domains in aberrant combinations can subvert cell signalling and be causative in diseases such as cancer. Major inventions such as phosphotyrosine (pTyr)-mediated signalling that flourished in the first multi-cellular animals and their immediate predecessors resulted from stepwise evolutionary progression. This involved changes in the binding properties of interaction domains such as SH2 and their linkage to new domain types, and alterations in the catalytic specificities of kinases and phosphatases. This review will focus on the modular aspects of signalling networks and the mechanism by which they may have evolved.  相似文献   
53.
Lambert JP  Pawson T  Gingras AC 《Proteomics》2012,12(10):1609-1622
Our ability to study protein-protein interactions has grown by leaps and bounds in recent years, enabling numerous large-scale studies to be performed in a variety of organisms. Despite this success, some classes of proteins, including those bound to chromatin, remain difficult to characterize through proteomic approaches. Some of the problems faced by researchers studying chromatin-bound proteins include low complex solubility, heterogeneous sample composition, and numerous transient interactions, which can be further complicated by the presence of DNA itself. To tackle these issues, a number of innovative protocols have been developed to better study the various facets of chromatin biology. In this review, we will discuss novel approaches to study protein-DNA interactions as well as protein complexes affecting chromatin.  相似文献   
54.
55.
56.
Middle T antigen (PymT) is the principal transforming component of polyomavirus, and rapidly induces hemangiomas in neonatal mice. PymT, a membrane-associated scaffold, recruits and activates Src family tyrosine kinases, and, once tyrosine phosphorylated, binds proteins with PTB and SH2 domains such as ShcA, phosphatidylinositol 3-kinase (PI3K) and phospholipase Cgamma-1 (PLCgamma-1). To explore the pathways required for endothelial transformation in vivo, we introduced PymT mutant forms into mice. PymT variants unable to bind PI3K and PLCgamma-1 directly induced hemangiomas similarly to wild type, but a mutant unable to bind ShcA was transformation compromised. Requirement for a ShcA PTB domain- binding site was suppressed by replacing this motif in PymT with YXN sequences, which bind the Grb2 SH2 domain upon phosphorylation. Surprisingly, PymT recruitment of ShcA and Grb2 correlated with PI3K activation. PymT mimics activated receptor tyrosine kinases by forming a ShcA-Grb2-Gab1 complex, thus inducing Gab1 tyrosine phosphorylation, which itself is associated with PI3K. Therefore, PymT activation of ShcA-Grb2 signaling is critical for endothelial transformation, and PymT can stimulate Grb2 signaling to both the MAP kinase and PI3K pathways.  相似文献   
57.
PKA is retained within distinct subcellular environments by the association of its regulatory type II (RII) subunits with A-kinase anchoring proteins (AKAPs). Conventional reagents that universally disrupt PKA anchoring are patterned after a conserved AKAP motif. We introduce a phage selection procedure that exploits high-resolution structural information to engineer RII mutants that are selective for a particular AKAP. Selective RII (RSelect) sequences were obtained for eight AKAPs following competitive selection screening. Biochemical and cell-based experiments validated the efficacy of RSelect proteins for AKAP2 and AKAP18. These engineered proteins represent a new class of reagents that can be used to dissect the contributions of different AKAP-targeted pools of PKA. Molecular modeling and high-throughput sequencing analyses revealed the molecular basis of AKAP-selective interactions and shed new light on native RII-AKAP interactions. We propose that this structure-directed evolution strategy might be generally applicable for the investigation of other protein interaction surfaces.  相似文献   
58.
Trawl surveys in the estuary of the River Medway in the autumns of 1987–1991 have shown that the distribution of juvenile sea bass Dicentrarchus labrax is strongly associated with the warm-water outflow from Kingsnorth power station. In years of low abundance of first-year bass, very few were caught outside the warm-water discharge channel, whereas proportionately more fish of abundant year classes occupied the main river. About 15% of the available juvenile bass population died on the cooling-water intake screens at Kingsworth in the autumn and winter of 1987 and 1988. However, growth and survival of first-year bass in the Medway Estuary may be enhanced by the power station's warm-water effluent, such that overwinter mortality due to inadequate nutritional reserves and low temperatures may be considerably reduced.  相似文献   
59.
Src homology 2 (SH2) domains are the largest family of interaction modules encoded by the human genome to recognize tyrosine-phosphorylated sequences and thereby play pivotal roles in transducing and controlling cellular signals emanating from protein-tyrosine kinases. Different SH2 domains select for distinct phosphopeptides, and the function of a given SH2 domain is often dictated by the specific motifs that it recognizes. Therefore, deciphering the phosphotyrosyl peptide motif recognized by an SH2 domain is the key to understanding its cellular function. Here we cloned all 120 SH2 domains identified in the human genome and determined the phosphotyrosyl peptide binding properties of 76 SH2 domains by screening an oriented peptide array library. Of these 76, we defined the selectivity for 43 SH2 domains and refined the binding motifs for another 33 SH2 domains. We identified a number of novel binding motifs, which are exemplified by the BRDG1 SH2 domain that selects specifically for a bulky, hydrophobic residue at P + 4 relative to the Tyr(P) residue. Based on the oriented peptide array library data, we developed scoring matrix-assisted ligand identification (or SMALI), a Web-based program for predicting binding partners for SH2-containing proteins. When applied to SH2D1A/SAP (SLAM-associated protein), a protein whose mutation or deletion underlies the X-linked lymphoproliferative syndrome, SMALI not only recapitulated known interactions but also identified a number of novel interacting proteins for this disease-associated protein. SMALI also identified a number of potential interactors for BRDG1, a protein whose function is largely unknown. Peptide in-solution binding analysis demonstrated that a SMALI score correlates well with the binding energy of a peptide to a given SH2 domain. The definition of the specificity space of the human SH2 domain provides both the necessary molecular basis and a platform for future exploration of the functions for SH2-containing proteins in cells.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号