首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1088篇
  免费   54篇
  国内免费   1篇
  1143篇
  2024年   1篇
  2023年   3篇
  2022年   9篇
  2021年   16篇
  2020年   8篇
  2019年   17篇
  2018年   23篇
  2017年   11篇
  2016年   22篇
  2015年   52篇
  2014年   66篇
  2013年   65篇
  2012年   125篇
  2011年   86篇
  2010年   63篇
  2009年   51篇
  2008年   75篇
  2007年   79篇
  2006年   89篇
  2005年   65篇
  2004年   60篇
  2003年   50篇
  2002年   37篇
  2001年   10篇
  2000年   4篇
  1999年   4篇
  1998年   6篇
  1997年   9篇
  1996年   7篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1980年   2篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1933年   4篇
排序方式: 共有1143条查询结果,搜索用时 0 毫秒
51.
Endonuclease VIII from Escherichia coli is a DNA glycosylase/lyase that removes oxidatively damaged bases. EndoVIII is a functional homologue of endonuclease III, but a sequence homologue of formamidopyrimidine-DNA glycosylase (Fpg). Using multiple sequence alignments, we have identified six target residues in endoVIII that may be involved in the enzyme's glycosylase and/or lyase functions: the N-terminal proline, and five acidic residues that are completely conserved in the endoVIII-Fpg proteins. To investigate the contribution of these residues, site-directed mutagenesis was used to create seven mutants: P2T, E3D, E3Q, E6Q, D129N, D160N, and E174Q. Each mutant was assayed both for lyase activity on abasic (AP) sites and for glycosylase/lyase activity on 5-hydroxyuracil, thymine glycol, and gamma-irradiated DNA with multiple lesions. The P2T mutant did not have lyase or glycosylase/lyase activity but could efficiently form Schiff base intermediates on AP sites. E6Q, D129N, and D160N behaved essentially as endoVIII in all assays. E3D, E3Q, and E174Q retained significant AP lyase activity but had severely diminished or abolished glycosylase/lyase activities on the DNA lesions tested. These studies provide detailed predictions concerning the active site of endoVIII.  相似文献   
52.
Background aimsDendritic cells (DC) are increasingly being used as cellular vaccines to treat cancer and infectious diseases. While there have been some promising results in early clinical trials using DC-based vaccines, the inability to visualize non-invasively the location, migration and fate of cells once adoptively transferred into patients is often cited as a limiting factor in the advancement of these therapies. A novel perflouropolyether (PFPE) tracer agent was used to label human DC ex vivo for the purpose of tracking the cells in vivo by 19F magnetic resonance imaging (MRI). We provide an assessment of this technology and examine its impact on the health and function of the DC.MethodsMonocyte-derived DC were labeled with PFPE and then assessed. Cell viability was determined by examining cell membrane integrity and mitochondrial lipid content. Immunostaining and flow cytometry were used to measure surface antigen expression of DC maturation markers. Functional tests included bioassays for interleukin (IL)-12p70 production, T-cell stimulatory function and chemotaxis. MRI efficacy was demonstrated by inoculation of PFPE-labeled human DC into NOD-SCID mice.ResultsDC were effectively labeled with PFPE without significant impact on cell viability, phenotype or function. The PFPE-labeled DC were clearly detected in vivo by 19F MRI, with mature DC being shown to migrate selectively towards draining lymph node regions within 18 h.ConclusionsThis study is the first application of PFPE cell labeling and MRI cell tracking using human immunotherapeutic cells. These techniques may have significant potential for tracking therapeutic cells in future clinical trials.  相似文献   
53.
Neuronal death after brain injury   总被引:6,自引:0,他引:6  
  相似文献   
54.
55.
We report a nine-year-old girl (patient 1934) and a five-year-old boy (patient 2170) with small, de novo supernumerary marker chromosomes (SMCs) derived from proximal 17p. The clinical features of patient 1934 include developmental delay, triangular face, prominent forehead, low set ears, dental abnormalities, a high arched palate, long, flexible fingers, and joint laxity. Patient 2170 is affected with developmental delay, oral-motor dyspraxia/verbal apraxia, thick upper and lower lips, bilateral fifth finger clinodactyly, joint laxity and mild hypotonia. G-banded chromosome analysis of patient 1934 revealed mosaicism for a SMC in 72% of peripheral lymphocytes analyzed, whereas analysis of patient 2170 identified a smaller SMC present in 100% of cells analyzed. Fluorescence in situ hybridization (FISH) studies demonstrated that both of the SMCs derived from 17p10-p11.2. Using FISH and array-CGH analysis, the proximal breakpoints mapped within the centromere and the distal breakpoints were both located within the Smith-Magenis syndrome (SMS) common deletion region. We compare the clinical characteristics of our patients with those previously reported to have either SMC including 17p or duplications of proximal 17p in an effort to further delineate the phenotype of trisomy 17p10-p11.2 and to elucidate genotype-phenotype correlations.  相似文献   
56.
Partial exposure of single ventricular myocytes to membrane-permeant weak acids or bases, using a dual-microperfusion technique, generates large and stable intracellular pH (pHi) gradients. In this study, we have investigated the feasibility of using the technique to estimate junctional proton permeability. This was done by recording the pHi gradient developed across the junctional region of a pair of conjoined ventricular myocytes, isolated enzymically from a guinea pig heart when one of the cells was partially exposed to acetate or ammonium. We show that under HEPES-buffered conditions, the junctional discontinuity in the pHi profile can be used to derive an apparent proton permeability coefficient (PHapp). The mean PHapp obtained was 4.45 +/- 0.21.10(-4) cm/s (n=43) at an average junctional pHi of 7.04 +/- 0.02. In the presence of the junctional inhibitor alpha-glycyrrhetinic acid, exposure of the proximal cell to weak acid or base produced no pHi change in the distal cell, confirming that distal changes were normally caused by acid-base flux through connexons assembled into junctional channels. The validity of the dual-microperfusion method was tested further by using a diffusion-permeation-reaction model for intracellular protons, designed to highlight possible errors in the estimates of PHapp. Our technique for measuring PHapp provides a useful alternative to the previous, more invasive technique of locally loading acid through a cell-attached patch pipette. The technique may provide a simple method for investigating the factors regulating cell-to-cell proton transmission.  相似文献   
57.
We hypothesized that aging is characterized by a reduced release of nitric oxide (NO) in response to shear stress in resistance vessels. Mesenteric arterioles and arteries of young (6 mo) and aged (24 mo) male Fischer 344 rats were isolated and cannulated. Shear stress (15 dyn/cm(2))-induced dilation was significantly reduced and shear stress (1, 5, 10, and 15 dyn/cm(2))-induced increases in perfusate nitrite were significantly smaller at all shear stress levels in vessels of aged rats. Inhibition of NO synthesis abolished shear stress-induced release of nitrite. Furthermore, shear stress (15 dyn/cm(2))-induced release of nitrate was significantly higher and total nitrite (nitrite plus nitrate) was significantly lower in vessels of aged rats. Tiron or SOD significantly increased nitrite released from vessels of aged rats, but this was still significantly less than that in young rats. Superoxide production was increased and the activity of SOD was decreased in vessels of aged rats. There were no differences in endothelial NO synthase (eNOS) protein and basal activity or in Cu/Zn-SOD and Mn-SOD proteins in vessels of the two groups, but extracellular SOD was significantly reduced in vessels of aged rats. Maximal release of NO induced by shear stress plus ACh (10(-5) M) was comparable in the two groups, but phospho-eNOS in response to shear stress (15 dyn/cm(2)) was significantly reduced in vessels of aged rats. These data suggest that an increased production of superoxide, a reduced activity of SOD, and an impaired shear stress-induced activation of eNOS are the causes of the decreased shear stress-induced release of NO in vessels of aged rats.  相似文献   
58.
59.
The aim of the work was verification of the hypothesis that weak power frequency (50 Hz) magnetic fields (MF) affected the number of free oxygen radicals in living biological cells and that these changes could be qualitatively explained by the radical pair mechanism. The experiments were performed on rat lymphocytes. One-hour exposure to 50 Hz MF at 20, 40, or 200 microT flux densities was performed inside a pair of Helmholtz coils with axis along or crosswise to the Earth's static MF. Iron ions (FeCl2) were used as a stimulator of the oxidation processes. Oxygen radicals were measured by fluorimetry using a DCF-DA fluorescent probe. Only in the lymphocytes exposed at 40 microT MF directed along the Earth's static MF there was a decrease of fluorescence in relation to non-exposed samples. Our observation seems to confirm the hypothesis that low level power frequency MF affects oxidative processes which occur in living biological cells and that this effect can be explained by the radical pair mechanism.  相似文献   
60.
 The development of synchronous bursting in neuronal ensembles represents an important change in network behavior. To determine the influences on development of such synchronous bursting behavior we study the dynamics of small networks of sparsely connected excitatory and inhibitory neurons using numerical simulations. The synchronized bursting activities in networks evoked by background spikes are investigated. Specifically, patterns of bursting activity are examined when the balance between excitation and inhibition on neuronal inputs is varied and the fraction of inhibitory neurons in the network is changed. For quantitative comparison of bursting activities in networks, measures of the degree of synchrony are used. We demonstrate how changes in the strength of excitation on inputs of neurons can be compensated by changes in the strength of inhibition without changing the degree of synchrony in the network. The effects of changing several network parameters on the network activity are analyzed and discussed. These changes may underlie the transition of network activity from normal to potentially pathologic (e.g., epileptic) states. Received: 21 May 2002 / Accepted in revised form: 3 December 2002 / Published online: 7 March 2003 Correspondence to: P. Kudela (e-mail: pkudela@jhmi.edu) Acknowledgements. This research was supported by NIH grant NS 38958.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号