首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1088篇
  免费   54篇
  国内免费   1篇
  1143篇
  2024年   1篇
  2023年   3篇
  2022年   9篇
  2021年   16篇
  2020年   8篇
  2019年   17篇
  2018年   23篇
  2017年   11篇
  2016年   22篇
  2015年   52篇
  2014年   66篇
  2013年   65篇
  2012年   125篇
  2011年   86篇
  2010年   63篇
  2009年   51篇
  2008年   75篇
  2007年   79篇
  2006年   89篇
  2005年   65篇
  2004年   60篇
  2003年   50篇
  2002年   37篇
  2001年   10篇
  2000年   4篇
  1999年   4篇
  1998年   6篇
  1997年   9篇
  1996年   7篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1980年   2篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1933年   4篇
排序方式: 共有1143条查询结果,搜索用时 6 毫秒
101.
Sadowski PG  Groen AJ  Dupree P  Lilley KS 《Proteomics》2008,8(19):3991-4011
In eukaryotes, numerous complex sub-cellular structures exist. The majority of these are delineated by membranes. Many proteins are trafficked to these in order to be able to carry out their correct physiological function. Assigning the sub-cellular location of a protein is of paramount importance to biologists in the elucidation of its role and in the refinement of knowledge of cellular processes by tracing certain activities to specific organelles. Membrane proteins are a key set of proteins as these form part of the boundary of the organelles and represent many important functions such as transporters, receptors, and trafficking. They are, however, some of the most challenging proteins to work with due to poor solubility, a wide concentration range within the cell and inaccessibility to many of the tools employed in proteomics studies. This review focuses on membrane proteins with particular emphasis on sub-cellular localization in terms of methodologies that can be used to determine the accurate location of membrane proteins to organelles. We also discuss what is known about the membrane protein cohorts of major organelles.  相似文献   
102.
Phosphatidylinositol (PtdIns) 4-kinases catalyze the conversion of PtdIns to PtdIns 4-phosphate, the major precursor of phosphoinositides that regulates a vast array of cellular processes. Based on enzymatic differences, two classes of PtdIns 4-kinase have been distinguished termed Types II and III. Type III kinases, which belong to the phosphatidylinositol (PI) 3/4-kinase family, have been extensively characterized. In contrast, little is known about the Type II enzymes (PI4KIIs), which have been cloned and sequenced very recently. PI4KIIs bear essentially no sequence similarity to other protein or lipid kinases; hence, they represent a novel and distinct branch of the kinase superfamily. Here we define the minimal catalytic domain of a rat PI4KII isoform, PI4KIIalpha, and identify conserved amino acid residues required for catalysis. We further show that the catalytic domain by itself determines targeting of the kinase to membrane rafts. To verify that the PI4KII family extends beyond mammalian sources, we expressed and characterized Drosophila PI4KII and its catalytic domain. Depletion of PI4KII from Drosophila cells resulted in a severe reduction of PtdIns 4-kinase activity, suggesting the in vivo importance of this enzyme.  相似文献   
103.
Phosphoinositides have a pivotal role as precursors to important second messengers and as bona fide signaling and scaffold targeting molecules. Phosphatidylinositol 4-kinases (PtdIns 4-kinases or PI4Ks) are at the apex of the phosphoinsitide cascade. Sequence analysis revealed that mammalian cells contain two type II PtdIns 4-kinase isoforms, now termed PI4KIIalpha and PI4KIIbeta. PI4KIIalpha was cloned first. It is tightly membrane-associated and behaves as an integral membrane protein. In this study, we cloned PI4KIIbeta and compared the two isoforms by monitoring the distribution of endogenous and overexpressed proteins, their modes of association with membranes, their response to growth factor stimulation or Rac-GTP activation, and their kinetic properties. We find that the two kinases have different properties. PI4KIIbeta is primarily cytosolic, and it associates peripherally with plasma membranes, endoplasmic reticulum, and the Golgi. In contrast, PI4KIIalpha is primarily Golgi-associated. Platelet-derived growth factor promotes PI4KIIbeta recruitment to membrane ruffles. This effect is potentially mediated through Rac; overexpression of the constitutively active RacV12 induces membrane ruffling, increases PI4KIIbeta translocation to the plasma membrane, and stimulates its activity. The dominant-negative RacN17 blocks plasma membrane association and inhibits activity. RacV12 does not boost the catalytic activity of PI4KIIalpha further, probably because it is constitutively membrane-bound and already activated. Membrane recruitment is an important mechanism for PI4KIIbeta activation, because microsome-bound PI4KIIbeta is 16 times more active than cytosolic PI4KIIbeta. Membrane-associated PI4KIIbeta is as active as membrane-associated PI4KIIalpha and has essentially identical kinetic properties. We conclude that PI4KIIalpha and PI4KIIbeta may have partially overlapping, but not identical, functions. PI4KIIbeta is activated strongly by membrane association to stimulate phosphatidylinositol 4,5-bisphosphate synthesis at the plasma membrane. These findings provide new insight into how phosphoinositide cascades are propagated in cells.  相似文献   
104.
The oxidatively induced DNA lesions 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) and 4,6-diamino-5-formamidopyrimidine (FapyA) are formed abundantly in DNA of cultured cells or tissues exposed to ionizing radiation or to other free radical-generating systems. In vitro studies indicate that these lesions are miscoding, can block the progression of DNA polymerases, and are substrates for base excision repair. However, no study has yet addressed how these lesions are metabolized in cellular extracts. The synthesis of oligonucleotides containing FapyG and FapyA at defined positions was recently reported. These constructs allowed us to investigate the repair of Fapy lesions in nuclear and mitochondrial extracts from wild type and knock-out mice lacking the two major DNA glycosylases for repair of oxidative DNA damage, OGG1 and NTH1. The background level of FapyG/FapyA in DNA from these mice was also determined. Endogenous FapyG levels in liver DNA from wild type mice were significantly higher than 8-hydroxyguanine levels. FapyG and FapyA were efficiently repaired in nuclear and mitochondrial extracts from wild type animals but not in the glycosylase-deficient mice. Our results indicated that OGG1 and NTH1 are the major DNA glycosylases for the removal of FapyG and FapyA, respectively. Tissue-specific analysis suggested that other DNA glycosylases may contribute to FapyA repair when NTH1 is poorly expressed. We identified NEIL1 in liver mitochondria, which could account for the residual incision activity in the absence of OGG1 and NTH1. FapyG and FapyA levels were significantly elevated in DNA from the knock-out mice, underscoring the biological role of OGG1 and NTH1 in the repair of these lesions.  相似文献   
105.
106.
The mitochondrial genomes of some Phaseolus species contain a fragment of chloroplast trnA gene intron, named pvs-trnA for its location within the Phaseolus vulgaris sterility sequence (pvs). The purpose of this study was to determine the type of transfer (intracellular or horizontal) that gave rise to pvs-trnA. Using a PCR approach we could not find the respective portion of the trnA gene as a part of pvs outside the Phaseolus genus. However, a BLAST search revealed longer fragments of trnA present in the mitochondrial genomes of some Citrus species, Helianthus annuus and Zea mays. Basing on the identity or near-identity between these mitochondrial sequences and their chloroplast counterparts we concluded that they had relocated from chloroplasts to mitochondria via recent, independent, intracellular DNA transfers. In contrast, pvs-trnA displayed a relatively higher sequence divergence when compared with its chloroplast counterpart from Phaseolus vulgaris. Alignment of pvs-trnA with corresponding trnAfragments from 35 plant species as well as phylogenetic analysis revealed that pvs-trnA grouped with non-eudicot sequences and was well separated from all Fabalessequences. In conclusion, we propose that pvs-trnA arose via horizontal transfer of a trnA intron fragment from chloroplast of a non-eudicot plant to Phaseolus mitochondria. This is the first example of horizontal transfer of a chloroplast sequence to the mitochondrial genome in higher plants.  相似文献   
107.
Fluorescence and phosphorescence measurements have been carried out on single-p tryptophan (Trp 43 or Trp 75)-containing mutants of Tet repressor (Tet R). Tet R containing Trp 43, the residue localized in the DNA recognition helix of the repressor, has been used to observe the binding of Tet R to two 20-bp DNA sequences of tet O1 and tet O2 operators. Binding of Tet R to tet O1 operator leads to a 78% decrease of the repressor fluorescence intensity, with an accompanying 20-nm blue shift of its fluorescence emission maximum to 330 nm. Upon binding of Tet R to tet O2 operator, the Trp 43 fluorescence intensity is quenched by 60%, and a 10-nm shift of its emission maximum to 340 nm occurs. Solute fluorescence quenching studies, using acrylamide, performed at low ionic strength indicate that in both the complex of Tet R with the O1 and that with the O2 operator, Trp 43 is moderately buried, as indicated by a bimolecular rate quenching constant of about 1.8 × 109 M–1 sec–1. In contrast to the Tet R–tet O2 complex, the Stern–Volmer acrylamide quenching constant K sv of the complex with tet O1 operator changes from 7.5 M–1 at 5 mM NaCl to 22 M–1 at 200 mM NaCl, indicating different exposures of Trp 43 in the two complexes in solutions of higher ionic strength. Phosphorescence studies showed a 0–0 vibronic transition at 408 and 403 nm for Trp 43 and Trp 75, respectively. Upon binding of Tet R to the tet operators, we observed red shifts of 0–0 vibronic bands of Trp 43 to 413 and 412 nm for tet O1 and tet O2 operator, respectively, and the phosphorescence triplet lifetime of Trp 43 at 75 K was quenched from 6.0–5.5 to 3.5–3.3 sec. The thermal phosphorescence quenching profile ranged from –200°C to –20°C, and differed drastically for the two complexes, suggesting different dynamics of the microenvironment of the Trp 43 residue. The luminescence data for Trp 43 of Tet R suggest that the recognition helix of Tet R interacts in different fashions with the tet O1 and tet O2 operators.  相似文献   
108.
Formamidopyrimidine DNA glycosylase (Fpg) is a DNA glycosylase with an associated AP lyase activity. As a DNA repair enzyme, Fpg excises several modified bases from DNA associated with exposure to oxidizing agents such as free radicals. Experiments in many laboratories have been limited by the availability of the enzyme, and its production required at least a week of work to complete its purification. We have devised a new method that decreases the time and expense of purification of Fpg that should render this protein accessible to any laboratory. Fpg was subcloned into a gamma P(L) promoter-containing vector (pRE) and overproduced in the appropriate Escherichia coli host cells to about 25% of the total cellular protein. Fpg was purified to homogeneity in a simple two-step procedure with a 50% saving in time when compared to the previously known procedure. Comparative studies showed that the excision of 8-hydroxyguanine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine, and 4,6-diamino-5-formamidopyrimidine, and to a lesser extent, 8-hydroxyadenine was virtually identical for the Fpg purified using this method and for the Fpg purified by the original method. Therefore, this method should prove useful for a large number of laboratories and further research on oxidative DNA damage.  相似文献   
109.
110.
International Journal of Primatology - Observations of early vocal behaviours in non-human primates (hereafter primates) are important for direct comparisons between human and primate vocal...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号