首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   427篇
  免费   46篇
  2023年   2篇
  2022年   5篇
  2021年   35篇
  2020年   20篇
  2019年   12篇
  2018年   13篇
  2017年   10篇
  2016年   20篇
  2015年   23篇
  2014年   32篇
  2013年   27篇
  2012年   31篇
  2011年   35篇
  2010年   21篇
  2009年   15篇
  2008年   15篇
  2007年   22篇
  2006年   12篇
  2005年   12篇
  2004年   15篇
  2003年   10篇
  2002年   8篇
  2001年   9篇
  2000年   12篇
  1999年   8篇
  1998年   8篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
排序方式: 共有473条查询结果,搜索用时 593 毫秒
51.
Stevioside is a diterpenoid glycoside consisting of an aglycone (steviol) and three glucose molecules. It is commonly used as an anti-hyperglycemic food because of its non-caloric property. Therefore, it is of interest to document the interactions of stevioside with AKT & PPAR-γ proteins using Autodock Vina PyRx docking techniques. Results of the docking studies indicate that stevioside had more than two hydrogen bond interactions with the AKT and PPAR γ protein for further consideration.  相似文献   
52.
The mTOR (mammalian or mechanistic Target of Rapamycin) is linked with oral cancer. Therefore, it is of interest to study the molecular docking-based binding of paclitaxel (a FDA approved drug for oral cancer) and its analogues with mTOR. Hence, we report the binding features of 10-Deacetyltaxol, 7-Epi-10-deacetyltaxol, 7-Epi-Taxol and 6alpha-Hydroxypaclitaxel with mTOR for further consideration.  相似文献   
53.
Shen W  Wei Y  Dauk M  Tan Y  Taylor DC  Selvaraj G  Zou J 《The Plant cell》2006,18(2):422-441
A mitochondrial glycerol-3-phosphate (G-3-P) shuttle that channels cytosolic reducing equivalent to mitochondria for respiration through oxidoreduction of G-3-P has been extensively studied in yeast and animal systems. Here, we report evidence for the operation of such a shuttle in Arabidopsis thaliana. We studied Arabidopsis mutants defective in a cytosolic G-3-P dehydrogenase, GPDHc1, which, based on models described for other systems, functions as the cytosolic component of a G-3-P shuttle. We found that the gpdhc1 T-DNA insertional mutants exhibited increased NADH/NAD+ ratios compared with wild-type plants under standard growth conditions, as well as impaired adjustment of NADH/NAD+ ratios under stress simulated by abscisic acid treatment. The altered redox state of the NAD(H) pool was correlated with shifts in the profiles of metabolites concerning intracellular redox exchange. The impairment in maintaining cellular redox homeostasis was manifest by a higher steady state level of reactive oxygen species under standard growth conditions and by a significantly augmented hydrogen peroxide production under stress. Loss of GPDHc1 affected mitochondrial respiration, particularly through a diminished capacity of the alternative oxidase respiration pathway. We propose a model that outlines potential involvements of a mitochondrial G-3-P shuttle in plant cells for redox homeostasis.  相似文献   
54.
Glycine betaine (GB) is a compatible solute that is also capable of stabilizing the structure and function of macromolecules. Several GB-producing transgenic rice lines were generated in which the Arthrobacter pascens choline oxidase (COX) gene, fused to a chloroplast targeting sequence (TP) was expressed under the control of an ABA-inducible promoter (SIP; stress-inducible promoter) or a ubiquitin (UBI) gene promoter that is considered to be constitutive. This comparison led to interesting observations that suggest complex regulation with respect to GB synthesis and plant growth response under stress. In spite of the use of the well-studied stress-inducible promoter, the highest level of GB accumulation (up to 2.60 micromol g(-1) DW) in the SIP lines grown under saline conditions was not as high as in the UBI lines (up to 3.12 micromol g(-1) DW). Therefore, the use of an ABA-inducible promoter was not more beneficial for de novo production of GB. Interestingly, saline growth conditions enhanced GB accumulation by up to 89% in the SIP lines, whereas up to 44% increase was seen in a UBI line. In all these cases the GB levels were many-fold below the range reported for plant species that produce GB naturally. In spite of lower GB concentrations, statistically greater levels of stress tolerance were found in SIP lines than in UBI lines, suggesting that the stress protection observed in SIP plants cannot be totally explained by the increase in the GB content.  相似文献   
55.
Escherichia coli K1 invasion of human brain microvascular endothelial cells (HBMEC) requires the reorganization of host cytoskeleton at the sites of bacterial entry. Both actin and myosin constitute the cytoskeletal architecture. We have previously shown that myosin light chain (MLC) phosphorylation by MLC kinase is regulated during E. coli invasion by an upstream kinase, p21-activated kinase 1 (PAK1), which is an effector protein of Rac and Cdc42 GTPases, but not of RhoA. Here, we report that the binding of only Rac1 to PAK1 decreases in HBMEC upon infection with E. coli K1, which resulted in increased phosphorylation of MLC. Overexpression of a constitutively active (cAc) form of Rac1 in HBMEC blocked the E. coli invasion significantly, whereas overexpression of a dominant negative form had no effect. Increased PAK1 phosphorylation was observed in HBMEC expressing cAc-Rac1 with a concomitant reduction in the phosphorylation of MLC. Immunocytochemistry studies demonstrated that the inhibition of E. coli invasion into cAc-Rac1/HBMEC is due to lack of phospho-MLC recruitment to the sites of E. coli entry. Taken together the data suggest that E. coli modulates the binding of Rac1, but not Cdc42, to PAK1 during the invasion of HBMEC.  相似文献   
56.
We report here a novel detection scheme for simultaneous detection of NADH and H(2)O(2) based on a bifunctional poly(thionine)-modified electrode. Electropolymerization of thionine on a "preanodized" screen-printed carbon electrode effectively lowers the oxidation potential of NADH to 0.15 V (vs. Ag/AgCl). Since poly(thionine) is also a well known electrochemical mediator for H(2)O(2) reduction, we further developed a poly(thionine)-modified ring disk electrode for simultaneous measurement of nicotinamide adenine dinucleotide (NADH) and hydrogen peroxide (H(2)O(2)) by flow injection analysis. By applying the optimized detection potentials of 0.2V and -0.2V at disk and ring electrodes, respectively, this system allows the simultaneous measurement of both analytes with good sensitivity (0.13 μA/mM for H(2)O(2) and 0.34 μA/mM for NADH) and limit of detection (1.74 μM and 26.0 μM for NADH and H(2)O(2)). This opens the possibility of a whole series of biosensor applications.  相似文献   
57.
New complexes, [Ni(HL)(PPh(3))]Cl (1), [Pd(L)(PPh(3))](2), and [Pd(L)(AsPh(3))](3), were synthesized from the reactions of 4-chloro-5-methyl-salicylaldehyde thiosemicarbazone [H(2)L] with [NiCl(2)(PPh(3))(2)], [PdCl(2)(PPh(3))(2)] and [PdCl(2)(AsPh(3))(2)]. They were characterized by IR, electronic, (1)H-NMR spectral data. Further, the structures of the complexes have been determined by single crystal X-ray diffraction. While the thiosemicarbazone coordinated as binegative tridentate (ONS) in complexes 2 and 3, it is coordinated as mono negative tridentate (ONS) in 1. The interactions of the new complexes with calf thymus DNA was examined by absorption and emission spectra, and viscosity measurements. Moreover, the antioxidant properties of the new complexes have also been tested against DPPH radical in which complex 1 exhibited better activity than that of the other two complexes 2 and 3. The in vitro cytotoxicity of complexes 1-3 against A549 and HepG2 cell lines was assayed, and the new complexes exhibited higher cytotoxic activity with lower IC(50) values indicating their efficiency in killing the cancer cells even at very low concentrations.  相似文献   
58.
Pharmacophore modelling and atom-based 3D-QSAR studies were carried out for a series of compounds belonging to N-methyl pyrimidones as HIV-1 integrase inhibitors. Based on the ligand-based pharmacophore model, we got 5-point pharmacophore model AADDR, with two hydrogen bond acceptors (A), two hydrogen bond donors (D) and one aromatic ring (R). The generated pharmacophore-based alignment was used to derive a predictive atom-based 3D-QSAR model for the training set (r(2)?=?0.92, SD?=?0.16, F?=?84.8, N?=?40) and for test set (Q(2)?=?0.71, RMSE?=?0.06, Pearson R?=?0.90, N?=?10). From these results, AADDR pharmacophore feature was selected as best common pharmacophore hypothesis, and atom-based 3D-QSAR results also support the outcome by means of favourable and unfavourable regions of hydrophobic and electron-withdrawing groups for the most potent compound 30. These results can be useful for further design of new and potent HIV-1 IN inhibitors.  相似文献   
59.
Hydrogen is considered as a renewable energy source and it is also regarded as future fuel. Currently, hydrogen production through a biotechnological approach is a research priority. Hydrogenogens, a microbial species, are of significant interest to researchers because of their ability to produce biological hydrogen. Carboxydothermus hydrogenoformans Z-2901 is one among the hydrogenogens that can grow anaerobically by utilizing pyruvate as a carbon source, and can produce molecular hydrogen. In the present study, we performed an in silico kinetic simulation using the available Kyoto Encyclopedia of Genes and Genomes (KEGG) model and reconstructed pyruvate metabolism in C. hydrogenoformans Z-2901. During this metabolism, dissimilation of pyruvate leads to the formation of energy co-factors, such as ATP and NAD+/ NADH, and the level of these co-factors influences the specific growth rate of organism and hydrogen production. Our strategy for improving hydrogen production involves maximizing the ATP and NAD+ yield by modification of kinetic properties and adding new reactions in pyruvate metabolism through metabolic pathway reconstruction. Moreover, the influence of phosphoenol pyruvate carboxylase and pyruvate dehydrogenase enzyme concentration on cofactor productions was also simulated. The theoretical molar yield of ATP and NAD+ were obtained as 2.32 and 1.83 mM, respectively, from 1 mM/mg of phosphoenol pyruvate (PEP) utilization. A higher yield of ATP is achieved when the PEP level reaches 5 mM/mg. This work also suggests that PEP can be considered as an alternative substrate. In conclusion, the simulation results reported in this paper can be applied to design and evaluate strategies of strain construction for optimal hydrogen yield in C. hydrogenoformans.  相似文献   
60.

Objective

Olfaction is impaired in chronic rhinosinusitis (CRS). The study has two aims: (1) to determine whether changes in cation concentration occur in the olfactory mucus of mice with CRS, which may affect chemo-electrical transduction, (2) and to examine whether these alterations are physiologically significant in humans.

Study Design

Animal study in mice and translational study in humans.

Methods

Inflammation was induced by sensitization and chronic exposure of 16 C57BL/6 mice to Aspergillus fumigatus. The control group included 16 untreated mice. Ion-selective microelectrodes were used to measure free cation concentrations in the olfactory mucus of 8 mice from each treatment group, while the remaining mice were sacrificed for histology. To validate the findings in the animal model, olfactory threshold was measured in 11 healthy human participants using Sniffin’ Sticks before and after nasal irrigation with solutions that were composed of either of the cation concentrations.

Results

In 8 mice, olfactory mucus of chronically inflamed mice had lower [Na+] (84.8±4.45 mM versus 93.73±3.06 mM, p = 0.02), and higher [K+] (7.2±0.65 mM versus 5.7±0.20 mM, p = 0.04) than controls. No difference existed in [Ca2+] (0.50±0.12 mM versus 0.54±0.06 mM, p = 0.39). In humans, rinsing with solutions replicating ion concentrations of the mouse mucosa with chronic inflammation caused a significant elevation in the median olfactory threshold (9.0 to 4.8, p = 0.003) but not with the control solution (8.3 to 7.8, p = 0.75).

Conclusion

Chronic inflammation elevates potassium and lowers sodium ion concentration in mice olfactory mucus. Nasal irrigation with a corresponding solution induced olfactory threshold shift in humans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号