首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   2篇
  2022年   2篇
  2021年   3篇
  2018年   6篇
  2017年   1篇
  2016年   5篇
  2015年   4篇
  2014年   5篇
  2013年   4篇
  2012年   7篇
  2011年   6篇
  2010年   6篇
  2009年   4篇
  2008年   10篇
  2007年   8篇
  2006年   11篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  1997年   1篇
排序方式: 共有97条查询结果,搜索用时 328 毫秒
41.
Data on the frequency of aneuploidy in farm animals are lacking and there is the need for a reliable technique which is capable of detecting all chromosomes simultaneously in a single cell. With the employment of comparative genomic hybridization coupled with the whole genome amplification technique, this study brings new information regarding the aneuploidy of individual chromosomes in pigs. Focus is directed on in vivo porcine blastocysts and late morulas, 4.7% of which were found to carry chromosomal abnormality. Further, ploidy abnormalities were examined using FISH in a sample of porcine embryos. True polyploidy was relatively rare (1.6%), whilst mixoploidy was presented in 46.8% of embryos, however it was restricted to only a small number of cells per embryo. The combined data indicates that aneuploidy is not a prevalent cause of embryo mortality in pigs.  相似文献   
42.
Mdm2 can mediate p53 ubiquitylation and degradation either in the form of the Mdm2 homodimer or Mdm2/MdmX heterodimer. The ubiquitin ligase activity of these complexes resides mainly in their respective RING finger domains and also requires adjacent C-terminal tails. So far, structural studies have failed to show significant differences between Mdm2 RING homodimers and Mdm2/MdmX RING heterodimers. Here, we report that not only the primary amino acid sequence, but also the length of the C-terminal tail of Mdm2 is highly conserved through evolution and plays an important role in Mdm2 activity toward p53. Mdm2 mutants with extended C termini do not ubiquitylate p53 despite being capable of forming Mdm2 homodimers through both RING-acidic domain and RING-RING interactions. All extended mutants also retained the ability to interact with MdmX, and this interaction led to reactivation of their E3 ubiquitin ligase activity. In contrast, only a subset of extended Mdm2 mutants was activated by the interaction with Mdm2 RING domain, suggesting that Mdm2 homodimers and Mdm2/MdmX heterodimers may not be structurally and functionally fully equivalent.Key words: p53, Mdm2, RING domain, ubiquitylation, ubiquitin ligase, E3  相似文献   
43.
Numerous studies in humans link a nonsynonymous genetic polymorphism (I148M) in adiponutrin (ADPN) to various forms of fatty liver disease and liver cirrhosis. Despite its high clinical relevance, the molecular function of ADPN and the mechanism by which I148M variant affects hepatic metabolism are unclear. Here we show that ADPN promotes cellular lipid synthesis by converting lysophosphatidic acid (LPA) into phosphatidic acid. The ADPN-catalyzed LPA acyltransferase (LPAAT) reaction is specific for LPA and long-chain acyl-CoAs. Wild-type mice receiving a high-sucrose diet exhibit substantial upregulation of Adpn in the liver and a concomitant increase in LPAAT activity. In Adpn-deficient mice, this diet-induced increase in hepatic LPAAT activity is reduced. Notably, the I148M variant of human ADPN exhibits increased LPAAT activity leading to increased cellular lipid accumulation. This gain of function provides a plausible biochemical mechanism for the development of liver steatosis in subjects carrying the I148M variant.  相似文献   
44.
Lipid species changes for SV40-transformed fibroblasts from wild-type or from diacylglycerol kinase-epsilon (DGKepsilon) or diacylglycerol kinase-alpha (DGKalpha) knockout mice were determined for glycerophospholipids, polyphosphatidylinositides (GPInsP n ) and diacylglycerol (DAG) using direct infusion mass spectrometry. Dramatic differences in arachidonate (20:4 fatty acid)-containing lipids were observed for multiple classes of glycerophospholipids and polyphosphatidylinositides between wild-type and DGKepsilon knockout cells. However, no difference was observed in either the amount or the acyl chain composition of DAG between DGKepsilon knockout and wild-type cells, suggesting that DGKepsilon catalyzed the phosphorylation of a minor fraction of the DAG in these cells. The differences in arachidonate content between the two cell lines were greatest for the GPInsP n lipids and lowest for DAG. These findings indicate that DGKepsilon plays a significant role in determining the enrichment of GPInsP n with 20:4 and that there is a pathway for the selective translocation of arachidonoyl phosphatidic acid from the plasma membrane to the endoplasmic reticulum. In contrast, no substantial difference was observed in the acyl chain composition of any class of glycerophospholipid or diacylglycerol between lipid extracts from fibroblasts from wild-type mice or from DGKalpha knockout mice. However, the cells from the DGKalpha knockout mice had a higher concentration of DAG, consistent with the lack of downregulation of the major fraction of DAG by DGKalpha, in contrast with DGKepsilon that is primarily responsible for enrichment of GPInsP n with arachidonoyl acyl chains.  相似文献   
45.
Polo-like kinase 1 (PLK1) orchestrates multiple events of cell division. Although PLK1 function has been intensively studied in centriole-containing and rapidly cycling somatic cells, much less is known about its function in the meiotic divisions of mammalian oocytes, which arrest for a long period of time in prophase before meiotic resumption and lack centrioles for spindle assembly. Here, using specific small molecule inhibition combined with live mouse oocyte imaging, we comprehensively characterize meiotic PLK1’s functions. We show that PLK1 becomes activated at meiotic resumption on microtubule organizing centers (MTOCs) and later at kinetochores. PLK1 is required for efficient meiotic resumption by promoting nuclear envelope breakdown. PLK1 is also needed to recruit centrosomal proteins to acentriolar MTOCs to promote normal spindle formation, as well as for stable kinetochore-microtubule attachment. Consequently, PLK1 inhibition leads to metaphase I arrest with misaligned chromosomes activating the spindle assembly checkpoint (SAC). Unlike in mitosis, the metaphase I arrest is not bypassed by the inactivation of the SAC. We show that PLK1 is required for the full activation of the anaphase promoting complex/cyclosome (APC/C) by promoting the degradation of the APC/C inhibitor EMI1 and is therefore essential for entry into anaphase I. Moreover, our data suggest that PLK1 is required for proper chromosome segregation and the maintenance of chromosome condensation during the meiosis I-II transition, independently of the APC/C. Thus, our results define the meiotic roles of PLK1 in oocytes and reveal interesting differential requirements of PLK1 between mitosis and oocyte meiosis in mammals.  相似文献   
46.
The N-glycosylation of structural unit 1 of Rapana venosa hemocyanin was studied. Enzymatically liberated N-glycans were analyzed by matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) and capillary electrophoresis (CE)-MS following 8-aminopyrene-1,3,6-trisulfonate labeling and labeling with 3-aminopyrazole, a new dedicated sugar reagent. Structural information was obtained by exoglycosidase sequencing, on-line MS/MS, permethylation, and amidation. A mixture of high-mannose and complex glycans with so far unknown and unusual acidic terminal structures was revealed. As the hemocyanin protein sequence is currently unknown, de novo sequencing of the glycopeptides had to be carried out. The N-glycans were therefore enzymatically removed with simultaneous partial (50%) (18)O-labeling of glycosylated asparagine residues prior to proteolysis. Following nano-liquid chromatography-MALDI-TOF-MS, the originally glycosylated peptides could be revealed and their sequences determined by MS/MS. The site occupancies were subsequently elucidated by precursor ion scanning of the intact glycopeptides using a Q-Trap mass spectrometer.  相似文献   
47.
Background: Glycogen Phosphorylase BB (GPBB) is considered an early and specific marker of myocardial necrosis and ischemia. A POCT kit GPBB for diagnostic use has recently been approved. Aim: an evaluation of the correspondence of qualitative POCT GBPP measurements with ELISA test results. Material and methodology: 20 individuals with non-ST elevation myocardial infarction (non-STEMI) and 20 probands without acute coronary syndrome (ACS) were tested. GPBB (POCT, ELISA) in venous plasma (lithium-heparin) was assayed in all probands. Results: individuals with non-STEMI had significantly higher GPBB ELISA values (32.3 vs. 6.1 mug/l; p < 0.01). GPBB sensitivity and specificity for non-STEMI presence 6 hours after chest pain generation were 100 %. No proband was classified in a different subgroup with POCT of GPBB (positive/negative). GPBB POCT correlate with a non- STEMI diagnosis (chi(2) 36.1; p <0.01). Conclusion: GPBB POCT measurement is comparable with ELISA test results. GPBB analysis could expand the diagnostic palette in the first hours after the onset of acute coronary syndrome.  相似文献   
48.
49.
Type 1 diabetes mellitus (T1D) and multiple sclerosis (MS) are organ-specific autoimmune diseases leading to an attack of auto-aggressive lymphocytes against the pancreatic β-cells and central nervous system, respectively. Using four-colour flow cytometry, T-lymphocyte populations having an important function in autoimmune processes were analyzed. T-regulatory cells (Treg) CD4+CD25+CD127low, T-suppressor cells (Ts) CD8+CD28, activated helper CD4+CD25+CD127+ and cytotoxic CD8+CD25+ T-cells and also naive CD4+CD45RA+ and memory T-cells CD4+CD45RO+ were compared in the group of patients with T1D (n = 30), MS (n = 31) and in the group of healthy controls (n = 29). Significant differences in Ts cells, activated helper and cytotoxic cells and also memory T-cells were recognized in the group of T1D patients compared to healthy controls. Ts population was significantly lowered in MS patients as well. However, no significant differences were noticed in Treg population. The observed data demonstrate significant differences among patients with T1D and MS in comparison to healthy individuals.  相似文献   
50.
The Zn-proteinase, isolated from Saccharomonosporacanescens (NPS), shares many common features with thermolysin, but considerable differences are also evident, as far as the substrate recognition site is concerned. In substrates of general structure AcylAlaAlaPhe 4NA, this neutral proteinase cleaves only the arylamide bond (non-typical activity of Zn-proteinases), while thermolysin attacks the peptide bond Ala-Phe. Phosphoramidon is a powerful tight binding inhibitor for thermolysin and significantly less specific towards NPS. The Ki-values (65 μM for NPS vs 0.034 μM for thermolysin) differ nearly 2000-folds. This implies significant differences in the specificity of the corresponding subsites. The carbohydrate moiety is supposed to accommodate in the S1-subsite and the series of arabinopyranosides and glucopyranosides (12 compounds), which are assayed as inhibitors in a model system: NPS with SucAlaAlaPhe4NA as a substrate could be considered as mapping the S1-subsite of NPS. Members of the series with an additional ring (3,4-epithio, 3,4-anhydro-derivatives) turned out to be reasonably good competitive inhibitors (Ki ≈ 0.1-0.2 mM are of the same order as the Ki value for phosphoramidon). The structure of these compounds (8, 9, 11 and 12) seems to fit the size of the S1-subsite and due to an appropriately oriented OH-group in addition, to protect the active site Zn2+.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号