首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2058篇
  免费   106篇
  国内免费   2篇
  2166篇
  2023年   24篇
  2022年   54篇
  2021年   80篇
  2020年   51篇
  2019年   48篇
  2018年   63篇
  2017年   63篇
  2016年   73篇
  2015年   99篇
  2014年   125篇
  2013年   139篇
  2012年   174篇
  2011年   153篇
  2010年   95篇
  2009年   73篇
  2008年   96篇
  2007年   97篇
  2006年   87篇
  2005年   66篇
  2004年   75篇
  2003年   55篇
  2002年   40篇
  2001年   26篇
  2000年   39篇
  1999年   28篇
  1998年   20篇
  1997年   12篇
  1996年   12篇
  1995年   4篇
  1994年   5篇
  1993年   7篇
  1992年   23篇
  1991年   18篇
  1990年   15篇
  1989年   15篇
  1988年   16篇
  1987年   4篇
  1986年   17篇
  1985年   12篇
  1984年   6篇
  1983年   6篇
  1982年   5篇
  1981年   3篇
  1980年   5篇
  1979年   5篇
  1978年   5篇
  1977年   3篇
  1972年   4篇
  1970年   3篇
  1969年   3篇
排序方式: 共有2166条查询结果,搜索用时 15 毫秒
101.
102.
A 40 year old man with frequent PVCs with two different morphologies was referred for catheter ablation. Although initial mapping in the RVOT revealed fragmented potentials 20ms earlier than PVC2 onset with a good pace map score, ablation at this site was unsuccessful. Subsequent mapping in the LCC/NCC junction revealed that local ventricular activation preceded QRS onset by 30 and 28 ms for PVC1 and PVC2, respectively. Altering the pacing output at this site produced QRS morphologies similar to PVC1(low output,6mA) and PVC2(high output,15mA) with better pace map scores compared to RVOT. During high-output pacing, there was an increase in stim-QRS latency with decremental conduction. Ablation at this site was successful and suppressed both PVCs.  相似文献   
103.
The present study was aimed at formulating tablets comprising of coating susceptible to microbial enzyme degradation for releasing budesonide in the colon. Tablets prepared by using Avicel® pH 102 as diluent and Eudragit® L100-55 as binder were coated to a weight gain of 10% w/w employing aqueous mixtures containing chitosan (CH) and chondroitin sulfate (CS). The interpolymer complex between CH and CS was characterized using Fourier transform infrared (FTIR) and differential scanning calorimetery (DSC) studies. The tablets were evaluated for release of budesonide through in vitro in vivo studies. Formation of bonds between –COO? and –OSO 3 ? groups of CS and –NH 3 + groups of CH was evident in the FTIR spectra of these interpolymer complexed (IPC) films. The DSC thermograms of these films revealed one endothermic transition between 190°C and 205°C, suggesting the formation of new bonds in the IPC. The pH sensitive swelling exhibited by these films was observed to be a function of CH concentration. Tablets coated with aqueous mixtures containing 40:60 or 50:50 ratio of CH/CS totally prevented the release of budesonide in pH 1.2 buffer. The peaks (FTIR) and endothermic transitions (DSC) characteristic of interpolymer complexation were observed to remain unaffected after sequential exposure of the films to pH 1.2 and pH 7.4 buffer IP. This proved the versatility of these IPC films for colon delivery. C max of 1,168.99 and 1,174.2 ng/mL, respectively, at 12 and 8 h post-oral dosing of tablets coated with 40:60 or 50:50 ratio of CH/CS was observed in rats. The aqueous CH/CS (40:60) coating could provide a facile method for delivering budesonide to the colon.  相似文献   
104.
The Oxa1 protein plays a central role in facilitating the cotranslational insertion of the nascent polypeptide chains into the mitochondrial inner membrane. Mitochondrially encoded proteins are synthesized on matrix-localized ribosomes which are tethered to the inner membrane and in physical association with the Oxa1 protein. In the present study we used a chemical cross-linking approach to map the Saccharomyces cerevisiae Oxa1-ribosome interface, and we demonstrate here a close association of Oxa1 and the large ribosomal subunit protein, MrpL40. Evidence to indicate that a close physical and functional relationship exists between MrpL40 and another large ribosomal protein, the Mrp20/L23 protein, is also provided. MrpL40 shares sequence features with the bacterial ribosomal protein L24, which like Mrp20/L23 is known to be located adjacent to the ribosomal polypeptide exit site. We propose therefore that MrpL40 represents the Saccharomyces cerevisiae L24 homolog. MrpL40, like many mitochondrial ribosomal proteins, contains a C-terminal extension region that bears no similarity to the bacterial counterpart. We show that this C-terminal mitochondria-specific region is important for MrpL40''s ability to support the synthesis of the correct complement of mitochondrially encoded proteins and their subsequent assembly into oxidative phosphorylation complexes.The mitochondrial genome encodes a small, but important, number of proteins (8). These proteins are predominantly essential components of the mitochondrial oxidative phosphorylation (OXPHOS) machinery. In the yeast Saccharomyces cerevisiae the proteins encoded by the mitochondrial DNA (mtDNA) include cytochrome c oxidase subunits Cox1, Cox2, and Cox3, cytochrome b of the cytochrome bc1 complex, F1Fo-ATP synthase subunits Atp6, Atp8, and Atp9, and the small ribosomal subunit component Var1. With the exception of Var1, these mitochondrially encoded proteins are integral membrane proteins which become inserted into the inner membrane during their synthesis on mitochondrial ribosomes tethered to the inner membrane (11, 19, 29, 32, 34). The cotranslational membrane insertion of these proteins is achieved by maintaining a close physical association of the ribosomes to the inner membrane at sites where the insertion machinery exists (19, 31, 32).Oxa1 is an inner membrane protein that forms a central component of the insertion machinery, whose presence is required for the cotranslational membrane insertion of the mitochondrially encoded proteins (4-6, 15-17). The Oxa1 protein has been shown to physically associate with the ribosomes and more specifically with the large ribosomal subunit. Matrix-exposed elements of the Oxa1 protein, such as its hydrophilic C-terminal tail, support this Oxa1-ribosome interaction (19, 32). Furthermore, in intact mitochondria we have previously demonstrated that Oxa1 can be chemically cross-linked to Mrp20, a component of the large ribosomal subunit (19). Mrp20 is homologous to the bacterial ribosomal protein L23, a component known from the structural analysis of the ribosomes to be located next to the polypeptide exit site of the large ribosomal subunit (3, 10, 23, 27, 30). Thus, it was concluded that Oxa1, the site of membrane insertion into the inner membrane, exists in close physical proximity to the large ribosomal subunit and specifically to that region of the ribosomes where the nascent chain emerges. This close physical relationship between ribosomal components and the Oxa1 insertion site has been proposed to support a tight coordination between the protein translation and membrane insertion events (19, 31, 32). Given the strong hydrophobicity of the OXPHOS complex subunits which are encoded by the mitochondrial DNA and synthesized by these ribosomes, a close coupling of the translation and insertion events is proposed to ensure that the hydrophobic nascent chains are directly inserted into the membrane during their synthesis. The exposure of hydrophobic nascent chains to the hydrophilic matrix space may promote their aggregation and thus incompetency for subsequence membrane insertion.In bacteria, the L23 protein has been implicated to play a direct role in the cotranslational insertion of proteins into the membrane (7, 13, 24, 33). Thus, it is possible that proteins adjacent to the polypeptide exit site of mitochondrial ribosomes may be directly involved in targeting ribosomes to specific regions of the inner membrane where the membrane insertion and subsequent assembly events occur. The mitochondrial ribosomes resemble their prokaryotic ancestors in some respects, e.g., antibiotic sensitivity, but they differ in a number of important ways (1, 12, 22, 30). In general, the protein content of the mitochondrial ribosomes is greater than their bacterial counterparts. This increase in protein content is largely attributed to the fact that the mitochondrial ribosomal proteins are larger in size than their bacterial homologs. Over the course of evolution, many of the mitochondrial ribosomal proteins have acquired novel extensions, new domains, in addition to their bacterial homology domains. These acquired extensions not only include N-terminal (often cleavable) signals to target these proteins (nuclear encoded) to the mitochondria but also in many instances large C-terminal extensions, which are unique to the mitochondrial ribosomal proteins and have thus been termed “mitospecific domains” (12, 30). Largely uncharacterized, the functional relevance of these various mitospecific domains of the ribosomal proteins remains unknown. It is speculated that some (or all) of these mitospecific domains serve to ensure that the ribosome becomes assembled and is translationally active while bound to the inner membrane surface.In the present study we sought to further characterize the interaction of the mitochondrial ribosome with the Oxa1 protein. We show here that MrpL40, a large ribosomal subunit component, is physically close to both the Mrp20 and Oxa1 proteins, demonstrating the proximity of MrpL40 to both the ribosomal polypeptide exit site and the Oxa1 membrane insertion site. MrpL40 contains a large C-terminal mitospecific domain, which includes a predicted α-helical region at its extreme C-terminal end. The results presented here highlight that the integrity of this domain of MrpL40 is crucial to ensure ribosome translational fidelity and subsequent OXPHOS complex assembly.  相似文献   
105.
In order to search for MDR modulators, rationally designed acridone derivatives were investigated for their effect on influx or efflux of Rhodamine6G (R6G) in CAI4 cells. Results of these investigations indicate that in presence of compound 12, inhibition of growth of CAI4 cells and also an increased influx/efflux of R6G in CAI4 cells have been observed. This seems to be occurring due to the cell wall rupturing of Candida albicans. Compound 12 may be a suitable candidate for candidiasis therapy.  相似文献   
106.
Ageratum conyzoides L. (billy goat weed; Asteraceae) is an annual invasive weed native of tropical America and has now naturalized worldwide, particularly in Southeast Asia. The present study investigated the nature and potential of root-mediated allelopathic interference of A. conyzoides against rice (Oryza sativa). Root and shoot length and biomass accumulation of rice were significantly reduced (by 18–30%) when grown in the rhizosphere soil of the weed indicating the release of putative allelochemicals from the weed into the soil. The growth of rice was also progressively reduced in the soil amended with increasing amounts of root residues (5, 10 and 20 g kg−1 soil) of A. conyzoides. The addition of activated charcoal, an inert material with high affinity for organic biomolecules, partly ameliorated the negative effects of root residues amended in the soil. Further, there was no negative effect on the availability of soil nutrients in the root-amended soils. These were rather nutrient rich with greater electrical conductivity, and higher amount of organic matter, thus indicating no role in observed growth reduction. The reduction in allelopathic effects of root residue upon charcoal addition further indicated that putative phytotoxins released from the weed roots are water-soluble phenolic compounds. A significant amount of water-soluble phenolics were present in rhizosphere (∼6-times higher) and root-amended soils (∼5–10-fold higher) and their content was reduced (to ∼3.6–7.0-fold higher) when charcoal was added. The observed growth reduction in Ageratum rhizospheric or root-amended soils was concomitant with the amount of phenolic compounds. Upon HPLC analyses, these were identified as p-coumaric acid, gallic acid, ferulic acid, p-hydroxybenzoic acid and anisic acid. Under laboratory conditions, these phenolic acids reduced the root length and seedling weight of rice individually as well as in equimolar mixture, though no synergistic effect was noticed. The study concludes that root exudates and residues of A. conyzoides suppress the growth of rice by releasing phenolic allelochemicals into the soil rhizosphere and not through alteration of soil nutrients, and allelopathy plays a significant role in root-mediated negative interference of A. conyzoides.  相似文献   
107.
Activating ras mutations are frequently found in malignant tumors of the pancreas, colon, lung and other tissues. RAS activates a number of downstream pathways that ultimately cause cellular transformation. Several recent studies suggested that one of those pathways involves Aurora kinases. Overexpression of Aurora‐B kinase can augment transformation by oncogenic RAS, however the mechanism was not determined. The cooperative effect of high levels of Aurora kinase is important since this kinase is frequently overexpressed in human tumors. We have used two Aurora kinase inhibitors to test their effect on RAS signaling. We find that these inhibitors have no effect on the phosphorylation of MEK1/2 or MAPK in response to RAS. Furthermore, inhibiting Aurora kinases in human cancer cells with or without activated RAS did not change the length of the cell cycle nor induce apoptosis suggesting that these kinases do not play a direct role in these key cellular responses to activated RAS. Overexpression of Aurora B can cause cells to become polyploid. Also, inducing polyploidy with cytochalasin D was reported to induce neoplastic transformation, suggesting that Aurora overexpression may cooperate with RAS indirectly by inducing polyploidy. We find that inducing polyploidy with cytochalasin D or blebbistatin does not enhance transformation by oncogenic RAS. Our observations argue against a direct role for Aurora kinases in the RAS‐MAPK pathway, and suggest that the polyploid state does not enhance transformation by RAS. J. Cell. Biochem. 106: 33–41, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   
108.
Delta (δ) subunit containing GABAA receptors are expressed extra‐synaptically and mediate tonic inhibition. In cerebellar granule cells, they often form a receptor together with α6 subunits. We were interested to determine the architecture of these receptors. We predefined the subunit arrangement of 24 different GABAA receptor pentamers by subunit concatenation. These receptors (composed of α6, β3 and δ subunits) were expressed in Xenopus oocytes and their electrophysiological properties analyzed. Currents elicited in response to GABA were determined in presence and absence of 3α, 21‐dihydroxy‐5α‐pregnan‐20‐one and to 4,5,6,7‐tetrahydroisoxazolo[5,4‐c]‐pyridin‐3‐ol. α6‐β3‐α6/δ receptors showed a substantial response to GABA alone. Three receptors, β3‐α6‐δ/α6‐β3, α6‐β3‐α63‐δ and β3‐δ‐β36‐β3, were only uncovered in the combined presence of the neurosteroid 3α, 21‐dihydroxy‐5α‐pregnan‐20‐one with GABA. All four receptors were activated by 4,5,6,7‐tetrahydroisoxazolo[5,4‐c]‐pyridin‐3‐ol. None of the functional receptors was modulated by physiological concentrations (up to 30 mM) of ethanol. GABA concentration response curves indicated that the δ subunit can contribute to the formation of an agonist site. We conclude from the investigated receptors that the δ subunit can assume multiple positions in a receptor pentamer composed of α6, β3 and δ subunits.  相似文献   
109.
The Hsp70 family member mortalin (mot-2/mthsp70/GRP75) binds to a carboxyl terminus region of the tumor suppressor protein p53. By in vivo co-immunoprecipitation of mot-2 with p53 and its deletion mutants, we earlier mapped the mot-2-binding site of p53 to its carboxyl terminus 312-352 amino acid residues. In the present study we attempted to disrupt mot-2-p53 interactions by overexpression of short p53 carboxyl-terminal peptides. We report that p53 carboxyl-terminal peptides (amino acid residues 312-390, 312-352, 323-390, and 323-352) localize in the cytoplasm, whereas 312-322, 337-390, 337-352, and 352-390 locate mostly in the nucleus. Most interestingly, the cytoplasmically localizing p53 peptides harboring the residues 323-337 activated the endogenous p53 function by displacing it from p53-mortalin complexes and relocating it to the nucleus. Such activation of p53 function was sufficient to cause growth arrest of human osteosarcoma and breast carcinoma cells.  相似文献   
110.
BACKGROUND: Idiopathic granulomatous mastitis (IGM) is a benign, inflammatory breast disease of unknown etiology. Although it is rare, it frequently presents in a manner similar to that of breast carcinoma. CASE: A 41-year-old female developed unilateral idiopathic granulomatous mastitis, diagnosed by fine needle aspiration cytology. The clinical presentation and mammographic findings were suspicious for carcinoma. Fine needle aspiration cytology showed granulomatous inflammation. Histopathologic examination revealed a noncaseating, granulomatous lesion. Further clinical, radiologic and laboratory investigations disclosed no etiology. Therefore, we considered the case to be idiopathic granulomatous mastitis. CONCLUSION: Cytologically it may be difficult to distinguish IGM from carcinoma of the breast. Typical cytologic findings of the lesion are helpful to rule out cancer. In the differential diagnosis, all known causes of granulomatous changes have to be excluded before a diagnosis of idiopathic granulomatous mastitis is made.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号