The parvovirus minute virus of mice (MVM) packages a single copy of its linear single-stranded DNA genome into preformed capsids, in a process that is probably driven by a virus-encoded helicase. Parvoviruses have a roughly cylindrically shaped pore that surrounds each of the 12 5-fold vertices. The pore, which penetrates the virion shell, is created by the juxtaposition of 10 antiparallel β-strands, two from each of the 5-fold-related capsid proteins. There is a bottleneck in the channel formed by the symmetry-related side chains of the leucines at position 172. We report here the X-ray crystal structure of the particles produced by a leucine-to-tryptophan mutation at position 172 and the analysis of its biochemical properties. The mutant capsid had its 5-fold channel blocked, and the particles were unable to package DNA, strongly suggesting that the 5-fold pore is the packaging portal for genome entry. 相似文献
OBJECTIVE: The PROP-1 gene mutation is a rare disorder leading to combined pituitary hormone deficiencies over time. The aim was to analyze the clinical picture of 40 years of an almost untreated PROP-1 gene mutation. METHODS: We describe the clinical and hormonal data of 2 brothers from childhood to adulthood as well as imaging procedures (MRI of the pituitary gland, bone mineral density by QCT and DPX). The PROP-1 gene mutation (301-302delAG) was confirmed by DNA sequencing. RESULTS: Although long-standing untreated hypopituitarism was present, there was normal physical and professional activity. Bone mineral density was low only in 1 patient. Adrenocortical deficiency occurred late at 45 and 39 years. CONCLUSIONS: The biological evolution of the PROP-1 gene mutation illustrates the importance of continuous care for these patients. Hormonal deficiencies do not necessarily lead to the same phenotype as is obvious in differences of bone age and bone mineral density. 相似文献
Neurons are the basic computational units of the brain, but brain size is the predominant surrogate measure of brain functional capacity in comparative and cognitive neuroscience. This approach is based on the assumption that larger brains harbor higher numbers of neurons and their connections, and therefore have a higher information‐processing capacity. However, recent studies have shown that brain mass may be less strongly correlated with neuron counts than previously thought. Till now, no experimental test has been conducted to examine the relationship between evolutionary changes in brain size and the number of brain neurons. Here, we provide such a test by comparing neuron number in artificial selection lines of female guppies (Poecilia reticulata) with >15% difference in relative brain mass and numerous previously demonstrated cognitive differences. Using the isotropic fractionator, we demonstrate that large‐brained females have a higher overall number of neurons than small‐brained females, but similar neuronal densities. Importantly, this difference holds also for the telencephalon, a key region for cognition. Our study provides the first direct experimental evidence that selection for brain mass leads to matching changes in number of neurons and shows that brain size evolution is intimately linked to the evolution of neuron number and cognition. 相似文献
Intensity of 2 s delayed fluorescence (DF) as a function of steady-state actinic light intensity was investigated in pea chloroplasts in the presence of 10 M DCMU. The light saturation curve of DF was approximated by a sum of two hyperbolic components which differ by an order of magnitude in the half-saturating incident light intensity. The relative contribution of the amplitudes of the components was practically independent of cation (Na+ and Mg2+) concentration and a short-term heating of the chloroplasts at 45°C. The component saturating at low incident light intensity was selectively suppressed by 100 M DCMU or by 1 mol g-1 Chl oleic acid. DF intensity following excitation by a single saturating 15 s flash was equal to the intensity of the component saturating at a low incident light intensity. Upon flash excitation, the maximum steady-state DF level was found to be attained only after a series of saturating flashes. It is concluded that the two components of the DF light saturation curves are related to PS II centres heterogeneity in quantum yield of stabilization of the reduced primary quinone acceptor.Abbreviations DF
Delayed fluorescence
- L1- and L2-components
DF components saturating at low and high incident light intensity, respectively
-
I
incident light intensity
-
L
DF intensity
- P680
reaction centre chlorophyll of PS II
- QA and QB
primary and secondary quinone acceptors of PS II, respectively 相似文献
Transition-metal-ion-based paramagnetic chemical exchange saturation transfer (paraCEST) agents are a promising new class of compounds for magnetic resonance imaging (MRI) contrast. Members in this class of compounds include paramagnetic complexes of FeII, CoII, and NiII. The development of the coordination chemistry for these paraCEST agents is presented with an emphasis on the choice of the azamacrocycle backbone and pendent groups with the goals of controlling the oxidation state, spin state, and stability of the complexes. Chemical exchange saturation transfer spectra and images are compared for different macrocyclic complexes containing amide or heterocyclic pendent groups. The potential of paraCEST agents that function as pH- and redox-activated MRI probes is discussed. 相似文献
Many biologically interesting functions such as allosteric switching or protein-ligand binding are determined by the kinetics and mechanisms of transitions between various conformational substates of the native basin of globular proteins. To advance our understanding of these processes, we constructed a two-dimensional free energy surface (FES) of the native basin of a small globular protein, Trp-cage. The corresponding order parameters were defined using two native substructures of Trp-cage. These calculations were based on extensive explicit water all-atom molecular dynamics simulations. Using the obtained two-dimensional FES, we studied the transition kinetics between two Trp-cage conformations, finding that switching process shows a borderline behavior between diffusive and weakly-activated dynamics. The transition is well-characterized kinetically as a biexponential process. We also introduced a new one-dimensional reaction coordinate for the conformational transition, finding reasonable qualitative agreement with the two-dimensional kinetics results. We investigated the distribution of all the 38 native nuclear magnetic resonance structures on the obtained FES, analyzing interactions that stabilize specific low-energy conformations. Finally, we constructed a FES for the same system but with simple dielectric model of water instead of explicit water, finding that the results were surprisingly similar in a small region centered on the native conformations. The dissimilarities between the explicit and implicit model on the larger-scale point to the important role of water in mediating interactions between amino acid residues. 相似文献
Alveolar macrophages (AMs) play a major role in host defense against microbial infections in the lung. To perform this function, these cells must ingest and destroy pathogens, generally in phagosomes, as well as secrete a number of products that signal other immune cells to respond. Recently, we demonstrated that murine alveolar macrophages employ the cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel as a determinant in lysosomal acidification (Di, A., Brown, M. E., Deriy, L. V., Li, C., Szeto, F. L., Chen, Y., Huang, P., Tong, J., Naren, A. P., Bindokas, V., Palfrey, H. C., and Nelson, D. J. (2006) Nat. Cell Biol. 8, 933–944). Lysosomes and phagosomes in murine cftr−/− AMs failed to acidify, and the cells were deficient in bacterial killing compared with wild type controls. Cystic fibrosis is caused by mutations in CFTR and is characterized by chronic lung infections. The information about relationships between the CFTR genotype and the disease phenotype is scarce both on the organismal and cellular level. The most common disease-causing mutation, ΔF508, is found in 70% of patients with cystic fibrosis. The mutant protein fails to fold properly and is targeted for proteosomal degradation. G551D, the second most common mutation, causes loss of function of the protein at the plasma membrane. In this study, we have investigated the impact of CFTR ΔF508 and G551D on a set of core intracellular functions, including organellar acidification, granule secretion, and microbicidal activity in the AM. Utilizing primary AMs from wild type, cftr−/−, as well as mutant mice, we show a tight correlation between CFTR genotype and levels of lysosomal acidification, bacterial killing, and agonist-induced secretory responses, all of which would be expected to contribute to a significant impact on microbial clearance in the lung. 相似文献
Proper regulation of the cAMP-dependent protein kinase (protein kinase A, PKA) is necessary for cellular homeostasis, and dysregulation of this kinase is crucial in human disease. Mouse embryonic fibroblasts (MEFs) lacking the PKA regulatory subunit Prkar1a show altered cell morphology and enhanced migration. At the molecular level, these cells showed increased phosphorylation of cofilin, a crucial modulator of actin dynamics, and these changes could be mimicked by stimulating the activity of PKA. Previous studies of cofilin have shown that it is phosphorylated primarily by the LIM domain kinases Limk1 and Limk2, which are under the control of the Rho GTPases and their downstream effectors. In Prkar1a−/− MEFs, neither Rho nor Rac was activated; rather, we showed that PKA could directly phosphorylate Limk1 and thus enhance the phosphorylation of cofilin. These data indicate that PKA is crucial in cell morphology and migration through its ability to modulate directly the activity of LIM kinase. 相似文献
Central European raised bogs are unique and fragile ecosystems inhabited by specialists of higher plants, fungi, and insects. Many of these ecosystems have suffered and are still suffering due to peat harvesting and drainage. The respective specialists, so-called tyrphobionts, and their abundance can serve as good indicators of restoration processes after the disturbance. Various taxonomic groups may differ in the response to the processes. This study shows successional trends in two disturbed raised bogs compared to adjoining undisturbed reference raised bogs. During the growing season of 2019 we compared species richness of successional stages with reference sites for the following five groups of organisms: vascular plants, mosses, fungi, butterflies, and moths. After three decades of spontaneous succession, the species composition did not reach the reference site for any taxonomic group. Instead an alternative, near-natural woodland developed. The different groups of organisms exhibited very similar trends in species richness and participation of tyrphobionts. About half of these specialists occurring at the reference sites were able to colonise the disturbed sites, but mostly in low quantity. Water table and pH appeared significant environmental variables. It seems that habitat limitations play a more important role than dispersal limitations in this restoration process. More successful restoration might be possible by substantially increasing the water table in the disturbed raised bogs.