首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2855篇
  免费   215篇
  国内免费   2篇
  3072篇
  2023年   19篇
  2022年   43篇
  2021年   80篇
  2020年   54篇
  2019年   60篇
  2018年   87篇
  2017年   83篇
  2016年   112篇
  2015年   127篇
  2014年   155篇
  2013年   207篇
  2012年   217篇
  2011年   234篇
  2010年   168篇
  2009年   132篇
  2008年   169篇
  2007年   189篇
  2006年   186篇
  2005年   125篇
  2004年   125篇
  2003年   103篇
  2002年   106篇
  2001年   29篇
  2000年   16篇
  1999年   27篇
  1998年   26篇
  1997年   15篇
  1996年   17篇
  1995年   8篇
  1994年   8篇
  1993年   9篇
  1992年   9篇
  1991年   7篇
  1990年   9篇
  1989年   6篇
  1988年   5篇
  1987年   5篇
  1986年   6篇
  1985年   9篇
  1983年   8篇
  1982年   9篇
  1981年   8篇
  1980年   7篇
  1979年   6篇
  1977年   3篇
  1975年   5篇
  1974年   3篇
  1973年   3篇
  1969年   3篇
  1967年   3篇
排序方式: 共有3072条查询结果,搜索用时 15 毫秒
11.
12.
13.
Biochemical analysis of enantioselective short-chain alcohol dehydrogenase from the hyperthermophilic archaeon Thermococcus sibiricus (TsAdh319) revealed unique polyextremophilic properties of the enzyme – half-life of 1 h at 100 °C, tolerance to high salt (up to 4 M) and organic solvents (50% v/v) concentrations. To elucidate the molecular basis of TsAdh319 polyextremophilicity, we determined the crystal structure of the enzyme in a binary complex with 5-hydroxy-NADP at 1.68 Å resolution. TsAdh319 has a tetrameric structure both in the crystals and in solution with an intersubunit disulfide bond. The substrate-binding pocket is hydrophobic, spacious and open that is consistent with the observed promiscuity in substrate specificity of TsAdh319. The present study revealed an extraordinary number of charged residues on the surface of TsAdh319, 70% of which were involved in ion pair interactions. Further we compared the structure of TsAdh319 with the structures of other homologous short-chain dehydrogenases/reductases (SDRs) from thermophilic and mesophilic organisms. We found that TsAdh319 has the highest arginine and aspartate + glutamate contents compared to the counterparts. The frequency of occurrence of salt bridges on the surface of TsAdh319 is the highest among the SDRs under consideration. No differences in the proline, tryptophan, and phenylalanine contents are observed; the compactness of the protein core of TsAdh319, the monomer and tetramer organization do not differ from that of the counterparts. We suggest that the unique thermostability of TsAdh319 is associated with the rigidity and simultaneous “resilience” of the structure provided by a compact hydrophobic core and a large number of surface ion pairs. An extensive salt bridge network also might maintain the structural integrity of TsAdh319 in high salinity.  相似文献   
14.
We investigated the role of serotonin (5HT) and dopamine (DA) in the regulation of olfactory system function and odor-evoked tentacle movements in the snail Helix. Preparations of the posterior tentacle (including sensory pad, tentacular ganglion and olfactory nerve) or central ganglia with attached posterior tentacles were exposed to cineole odorant and the evoked responses were affected by prior application of 5HT or DA or their precursors 5-hydroxytryptophan (5HTP) and l-DOPA, respectively. 5HT applications decreased cineole-evoked responses recorded in the olfactory nerve and hyperpolarized the identified tentacle retractor muscle motoneuron MtC3, while DA applications led to the opposite changes. 5HTP and l-DOPA modified MtC3 activity comparable to 5HT and DA action. DA was also found to decrease the amplitude of spontaneous local field potential oscillations in the procerebrum, a central olfactory structure. In vivo studies demonstrated that injection of 5HTP in freely moving snails reduced the tentacle withdrawal response to aversive ethyl acetate odorant, whereas the injection of l-DOPA increased responses to “neutral” cineole and aversive ethyl acetate odorants. Our data suggest that 5HT and DA affect the peripheral (sensory epithelium and tentacular ganglion), the central (procerebrum), and the single motor neuron (withdrawal motoneuron MtC3) level of the snail’s nervous system.  相似文献   
15.
The potassium salt-induced transient increase of delayed fluorescence yield was studied in pea chloroplasts treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea.A simple kinetic model is proposed to account for the actinic light intensity dependence of the delayed fluorescence enhancement by the transmembrane diffusion potential induced by sudden salt addition. The electric field dependence of the rate constants for the recombination of primary separated charges with and without subsequent electronic excitation of reaction center chlorophyll was obtained.From the value of enhancement of delayed fluorescence by salt concentration gradients at saturating actinic light intensity, it is concluded that the distance, normal to thylakoid membrane surface, between the primary acceptor and the donor of Photosystem II is smaller than the membrane thickness.  相似文献   
16.
The photophysics of fac-[Re(R)(CO)(3)(CO(2)Et-dppz)](+) (R = py (), 4-Me(2)N-py (); CO(2)Et-dppz = dipyrido[3,2a:2',3'c]phenazine-11-carboxylic ethyl ester) was studied with luminescence spectroscopy and time-resolved infrared (TRIR) spectroscopy in the metal carbonyl (2,100-1,800 cm(-1)) and organic ester (1,800-1,600 cm(-1)) regions. For 1, the picosecond TRIR spectra in the metal carbonyl region provided evidence for the formation of an intra-ligand IL (pi-pi) excited state, which partially decays to an equilibrium with the metal-to-ligand charge transfer (MLCT) excited state. For 2 it is evident that both IL (pi-pi) and MLCT excited states are formed within 2 ps of excitation. The magnitude of the nu(CO) shift in the metal carbonyl region following excitation allows the MLCT excited states to be described more precisely as a dpi(Re) -->pi (phenazine) (3)MLCT state for 1 and as a dpi(Re) -->pi (phenanthroline) (3)MLCT state for 2.  相似文献   
17.
Urobilinoids belong to the heterogenous group of degradation products of bilirubin formed in the gastrointestinal tract by intestinal microflora. Among them urobilinogen and stercobilinogen with their respective oxidation products, urobilin and stercobilin, are the most important compounds. The aim of present study was to analyze the products of bacterial reduction of bilirubin in more detail. The strain of Clostridium perfringens isolated from neonatal stools, capable of reducing bilirubin, was used in the study. Bacteria were incubated under anaerobic conditions with various native as well as synthetic bile pigments, including radiolabeled unconjugated bilirubin (UCB). Their reduction products were extracted from media and separated following thin layer chromatography. Pigments isolated were analyzed by spectrophotometry, spectrofluorometry and mass spectrometry. In a special set of experiments, bilirubin diglucuronide was incubated with either bacterial lysate or partially purified bilirubin reductase and beta-glucuronidase to reveal whether bilirubin glucuronides may be directly reduced onto conjugated urobilinoids. A broad substrate activity was detected in the investigated strain of C. perfringens and a series of bilirubin reduction products was identified. These products were separated in the form of their respective chromogens and further oxidized. Based on their physical-chemical properties, as well as mass spectra, end-catabolic bilirubin products were identified to belong to urobilinogen species. The reduction process, catalyzed enzymatically by the studied bacterial strain, does not proceed to stercobilinogen. Bilirubin diglucuronide is not reduced onto urobilinoid conjugates, glucuronide hydrolysis must precede double bond reduction and thus UCB is reduced much faster.  相似文献   
18.
The epigenetic modification of histones dictates the formation of euchromatin and heterochromatin domains. We studied the effects of a deficiency of histone methyltransferase, SUV39h, and trichostatin A-dependent hyperacetylation on the structural stability of centromeric clusters, called chromocentres. We did not observe the expected disintegration of chromocentres, but both SUV39h deficiency and hyperacetylation in SUV39h+/+ cells induced the re-positioning of chromocentres closer to the nuclear periphery. Conversely, TSA treatment of SUV39h?/? cells re-established normal nuclear radial positioning of chromocentres. This structural re-arrangement was likely caused by several epigenetic events at centromeric heterochromatin. In particular, reciprocal exchanges between H3K9me1, H3K9me2, H3K9me3, DNA methylation, and HP1 protein levels influenced chromocentre nuclear composition. For example, H3K9me1 likely substituted for the function of H3K9me3 in chromocentre nuclear arrangement and compaction. Our results illustrate the important and interchangeable roles of epigenetic marks for chromocentre integrity. Therefore, we propose a model for epigenetic regulation of nuclear stability of centromeric heterochromatin in the mouse genome.  相似文献   
19.

Background and aims

The ionome (elemental composition) of grassland species has rarely been studied at the level of individual organs and little is known about effects of soil chemical properties on the ionome. Using the model oxalate plant Rumex obtusifolius, we asked how its biomass production and the distribution of elements between its organs is affected by soil chemical properties.

Methods

We established a pot experiment with R. obtusifolius planted in acidic non-contaminated control and in slightly acidic and alkaline soils anthropogenically contaminated by the risk elements As, Cd, Pb, and Zn. Both contaminated soils were untreated and treated by lime and superphosphate. We determined biomass production and the concentrations of elements in its organs.

Results

Biomass production was negatively related to the mobility of micro- and risk elements. Restricted transport of micro- and risk elements from belowground organs into leaves was recorded in untreated contaminated soils. In both lime-treated soils and in superphosphate-treated alkaline soil, elevated transport of micro- and risk elements from belowground organs into leaves was recorded in comparison to untreated contaminated soils. The lowest concentrations of micro- and risk elements were recorded in stems and seeds, followed by belowground organs and leaves.

Conclusions

R. obtusifolius is an As-, Cd-, Pb-, and Zn-excluder and is sensitive to high availability of micro- and risk elements in the soil. Soil chemical properties affect the distribution of essential elements within the plant greatly.  相似文献   
20.
Prenylquinols (tocochromanols and plastoquinols) serve as efficient physical and chemical quenchers of singlet oxygen (1O2) formed during high light stress in higher plants. Although quenching of 1O2 by prenylquinols has been previously studied, direct evidence for chemical quenching of 1O2 by plastoquinols and their oxidation products is limited in vivo. In the present study, the role of plastoquinol‐9 (PQH2‐9) in chemical quenching of 1O2 was studied in Arabidopsis thaliana lines overexpressing the SOLANESYL DIPHOSPHATE SYNTHASE 1 gene (SPS1oex) involved in PQH2‐9 and plastochromanol‐8 biosynthesis. In this work, direct evidence for chemical quenching of 1O2 by plastoquinols and their oxidation products is presented, which is obtained by microscopic techniques in vivo. Chemical quenching of 1O2 was associated with consumption of PQH2‐9 and formation of its various oxidized forms. Oxidation of PQH2‐9 by 1O2 leads to plastoquinone‐9 (PQ‐9), which is subsequently oxidized to hydroxyplastoquinone‐9 [PQ(OH)‐9]. We provide here evidence that oxidation of PQ(OH)‐9 by 1O2 results in the formation of trihydroxyplastoquinone‐9 [PQ(OH)3‐9]. It is concluded here that PQH2‐9 serves as an efficient 1O2 chemical quencher in Arabidopsis, and PQ(OH)3‐9 can be considered as a natural product of 1O2 reaction with PQ(OH)‐9. The understanding of the mechanisms underlying 1O2 chemical quenching provides information on the role of plastoquinols and their oxidation products in the response of plants to photooxidative stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号