首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2864篇
  免费   215篇
  国内免费   1篇
  3080篇
  2023年   19篇
  2022年   44篇
  2021年   80篇
  2020年   54篇
  2019年   60篇
  2018年   87篇
  2017年   83篇
  2016年   112篇
  2015年   127篇
  2014年   155篇
  2013年   208篇
  2012年   217篇
  2011年   237篇
  2010年   169篇
  2009年   133篇
  2008年   169篇
  2007年   189篇
  2006年   188篇
  2005年   125篇
  2004年   127篇
  2003年   103篇
  2002年   107篇
  2001年   29篇
  2000年   16篇
  1999年   24篇
  1998年   26篇
  1997年   15篇
  1996年   17篇
  1995年   8篇
  1994年   8篇
  1993年   9篇
  1992年   9篇
  1991年   7篇
  1990年   9篇
  1989年   8篇
  1988年   5篇
  1987年   4篇
  1986年   6篇
  1985年   8篇
  1984年   3篇
  1983年   8篇
  1982年   9篇
  1981年   8篇
  1980年   7篇
  1979年   5篇
  1975年   6篇
  1974年   3篇
  1973年   3篇
  1969年   3篇
  1967年   3篇
排序方式: 共有3080条查询结果,搜索用时 15 毫秒
101.
102.
103.
N-terminal methionine excision (NME) and N-terminal acetylation (NTA) are two of the most common protein post-translational modifications. NME is a universally conserved activity and a highly specific mechanism across all life forms. NTA is very common in eukaryotes but occurs rarely in prokaryotes. By analyzing data sets from yeast, mammals and bacteria (including 112 million spectra from 57 bacterial species), the largest comparative proteogenomics study to date, it is shown that previous assumptions/perceptions about the specificity and purposes of NME are not entirely correct. Although NME, through the universal enzymatic specificity of the methionine aminopeptidases, results in the removal of the initiator Met in proteins when the second residue is Gly, Ala, Ser, Cys, Thr, Pro, or Val, the comparative genomic analyses suggest that this specificity may vary modestly in some organisms. In addition, the functional role of NME may be primarily to expose Ala and Ser rather than all seven of these residues. Although any of this group provide “stabilizing” N termini in the N-end rule, and de facto leave the remaining 13 amino acid types that are classed as “destabilizing” (in higher eukaryotes) protected by the initiator Met, the conservation of NME-substrate proteins through evolution suggests that the other five are not crucially important for proteins with these residues in the second position. They are apparently merely inconsequential players (their function is not affected by NME) that become exposed because their side chains are smaller or comparable to those of Ala and Ser. The importance of exposing mainly two amino acids at the N terminus, i.e. Ala and Ser, is unclear but may be related to NTA or other post-translational modifications. In this regard, these analyses also reveal that NTA is more prevalent in some prokaryotes than previously appreciated.Although methionine is used to initiate protein synthesis for essentially all proteins, it is subsequently removed in a large percentage of cases, either by cleavage of an N-terminal “signal ” peptide (as part of cellular translocation mechanisms or precursor activations) or by the action of specific methionine aminopeptidases (MetAPs). Approximately two-thirds of the proteins in any proteome are potential substrates for the latter N-terminal methionine excision (NME),1 and MetAPs appear in all organisms from bacteria to eukaryotes (1). The second, or P2, amino acid in protein substrates is crucially important for NME because MetAP specificity mainly depends on the nature of this residue, a selectivity that is conserved across all species (15). These enzymes generally excise the N-terminal Met when the second residue is Gly, Ala, Ser, Thr, Cys, Pro, or Val (3, 6, 7), which are the amino acids smallest in size (based on radius of gyration of the side chain (8)). NME is a necessary process for proper cell functioning; it is included in the minimal genome set of eubacteria (9). Eukaryotes contain two MetAPs derived from a version in bacteria (MetAP1), and another found in archea (MetAP2) (11). Just as the deletion of MetAP eubacteria is lethal, the deletion of both MetAPs in yeast is also lethal (10).In 1988, Arfin and Bradshaw (2) observed that the specificity of NME coincided with that of the N-end rule (NER) (12, 13), a ubiquitin-dependent protein degradation process that is based on the recognition of N-terminal residues. The stabilizing residues for the NER include Gly, Ala, Ser, Cys, Thr, Pro, and Val and, with the exception of Met, the destabilizing residues are all found to be in the class of P2-residues that are not substrates for the MetAPs. This suggested that NME acts to release Met from proteins whose stability is unaffected by the NER creating at the same time a second class of proteins, who have the potential for regulated turnover downstream of the cotranslational processing, when, and if, the N-terminal Met is subsequently removed by a mechanism other than the cotranslational action of the MetAPs. However, despite extensive studies, this type of programmed protein turnover (requiring downstream removal of Met) has not been demonstrated to occur. An implication of this correlation is that exposing of the stabilizing residues may also contribute to increasing their lifetime.The stabilizing residues exposed by the action of the MetAPs can be further modified. The most extensive of these reactions is N-terminal acetylation (NTA), which can occur on as much as 70–80% of the mass of the soluble protein in eukaryotes. Although the specificity of the N-acetyltransferase (NAT) responsible is not as rigid as the MetAPs, the principal substrates in the stabilizing class are usually the four smallest residues (Gly, Ala, Ser, and Thr) (6, 14). A second class of NATs can also modify the retained Met when the adjacent residues are Asp, Glu or Asn (15). The functional importance of this modification (in either case) is not known although it has been suggested that it may exert a protective effect against spurious aminopeptidase cleavages. Recently, Hwang et al. (16) have extended the NER to include Nα-acetylated termini as also destabilizing thus providing another possible function for this modification. In contrast, to date, very few instances of Nα-acetylation have been observed in bacteria. Other modifications can also occur in both eukaryotes and prokaryotes although they are generally much more limited in scope.The specificity of the MetAPs suggest an apparent connection between NME and protein degradation. However, this connection has never been examined using high-throughput mass spectrometric data or a comparative genomics approach; thus it remains unclear whether exposing these stabilizing residues contributes to increasing protein half-life and thus represents a primary purpose of NME. (The connection between NME and NER in bacteria, which has an NER with a somewhat different profile (17), is even more obscure.) Recent studies provide some examples where disruption of NME via a single-residue substitution in the P2 position causes protein degradation (1820); however, some of these experimental results are in conflict with the NER (13). Giglione et al. (20) have shown that NME triggers degradation of D2 protein in Caenorhabditis reinhardtii in the PSII complex after replacing the second (stabilizing) Thr residue by another amino acid to prevent NME. This replacement results in early degradation of D2 and instability of the PSII complex. From this, Giglione et al. (20) postulated that NME determines protein life-span via currently unknown machinery. However, because Bachmair et al. (12) classified Met as a stabilizing residue, it is not entirely clear why substituting one stabilizing residue (Met) by another one (Gly, Ala, Ser, Cys, Thr, Pro, or Val) should affect protein stability and the substitution may have other deleterious effects that are manifested in different ways.The logic for analyzing NME and NER is shown in Fig. 1. NME exposes 7 different residues as new N termini of proteins. The natural conclusion that has become a dogma of NME is that these seven residues are exposed for a functional reason. The broad scope of NME suggests a universal reason that surpasses any particular protein''s role. In turn the comparative genomics postulate (function suggests conservation) leads to the conclusion that the seven residues should be evolutionarily conserved at position P2 of proteins. However, because only two out of the seven residues are conserved, we argue that one of the two assumptions in Fig. 1A must be incorrect and put forth the alternative logic depicted in Fig. 1B, which matches our analysis across dozens of species. According to this logic, NME accomplishes the goal of exposing Ala and Ser by exposing all residues with side chains smaller or comparable in size to Ala and Ser (G, T, V, P, and C). These residues are thus inconsequential players that are not functionally important (and are not evolutionarily conserved) at P2.Open in a separate windowFig. 1.Two alternative cases for NME function. A, NME exposes seven residues to be new N termini of proteins. Because this is presumably for some functional reason, the conventional assumption is that all seven residues must have functional importance as N termini. By the comparative genomics postulate (as defined in the text), evolutionary conservation of all seven at P2 should be observed. If all of these residues are not conserved, one of the two assumptions must be incorrect; either not all seven residues are important or the comparative genomics postulate is invalid. B, Given that the comparative genomics postulate holds, and only two of the seven residues are of functional importance as N termini, then the other five residues are inconsequential players and only these two residues should be evolutionarily conserved.In this report, we examine the connection between the specificity of NME and stabilizing residues of NER. In doing so, data sets from bacteria (including 112 million mass spectrometric spectra from 57 species), yeast, and mammals, were analyzed for N-terminal peptides both with respect to the excision (or not) of initiator Met residues and the distribution of P2-residues. The results reveal a strong preference of Ala and Ser as P2-residues. However, this process does not appear to be linked to the NER other than being generally compatible with it. These studies also demonstrate a much greater than expected number of Nα-acetylation events in some bacteria.  相似文献   
104.
White rot fungi (WRF) are applicable to biodegradation of recalcitrant pollutants. However, excessive biomass growth typical for WRF cultivation can hinder their large scale applications. Therefore, immobilization of Irpex lacteus to liquid-core alginate beads restricting excessive mycelium growth and simultaneously keeping high degradation rate of pollutants was tested. Effective diffusivities of dyes to the beads varied from (2.98 ± 0.69) × 10?10 to (10.27 ± 2.60) × 10?10 m2/s. Remazol Brilliant Blue R (RBBR), Reactive Orange 16 (RO16), and Naphthol Blue Black (NBB) were used as model dyes. The immobilized fungus decolorized model dyes when applied both in microwell plates and in fluidized bed reactors. Using the microwell plates, the apparent reaction rate constants ranged from (2.06 ± 0.11) × 10?2 to (11.06 ± 0.27) × 10?2 1/h, depending on the dye used and its initial concentration. High initial concentrations negatively affected the dye decolorization rate. No fungal growth outside the beads was observed in fluidized bed reactors and thus no operational problems linked to an excessive biomass growth occurred. When RBBR was decolorized in subsequent batches in the fluidized bed reactor, the apparent reaction rate constant increased from (11.63 ± 0.35) × 10?2 to (29.26 ± 7.19) × 10?2 1/h.  相似文献   
105.
Summary Osmotic swelling of human and rat erythrocytes does not induce regulatory volume decrease. Regulatory volume increase was observed in shrunken erythrocytes of rats only. This reaction was blocked by the inhibitors of Na+/H+ exchange. Cytoplasmic acidification in erythrocytes of both species increases the amiloride-inhibited component of22Na influx by five- to eight-fold. Both the osmotic and isosmotic shrinkage of rat erythrocytes results in the 10- to 30-fold increase of amiloride-inhibited22Na influx and a two-fold increase of furosemide-inhibited86Rb influx. We failed to indicate any significant changes of these ion transport systems in shrunken human erythrocytes. The shrinking of quin 2-loaded human and rat erythrocytes results in the two- to threefold increase of the rate of45Ca influx, which is completely blocked by amiloride. The dependence of volume-induced22Na influx in rat erythrocytes and45Ca influx in human erythrocytes on amiloride concentration does not differ. The rate of45Ca influx in resealed ghosts was reduced by one order of magnitude when intravesicular potassium and sodium were replaced by choline. It is assumed that the erythrocyte shrinkage increases the rate of a nonselective Ca o 2+ (Na i + , K i + ) exchange. Erythrocyte shrinking does not induce significant phosphorylation of membrane protein but increases the32P incorporation in diphosphoinositides. The effect of shrinkage on the32P labeling of phosphoinositides is diminished after addition of amiloride. It is assumed that volume-induced phosphoinositide response plays an essential role in the mechanism of the activation of transmembrane ion movements.  相似文献   
106.
A rapid and simple method has been developed for the electroporation of Clostridium perfringens with plasmid DNA. The new improvements, harvesting cells early in the logarithmic stage of growth, keeping the cells at room temperature and the absence of post-shock incubation on ice increased transformation efficiency by one order of magnitude.  相似文献   
107.
108.
Journal of Mathematical Biology - Real time, or quantitative, PCR typically starts from a very low concentration of initial DNA strands. During iterations the numbers increase, first essentially by...  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号