首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   314篇
  免费   32篇
  国内免费   1篇
  2023年   3篇
  2021年   4篇
  2019年   4篇
  2018年   7篇
  2017年   3篇
  2016年   5篇
  2015年   16篇
  2014年   8篇
  2013年   17篇
  2012年   21篇
  2011年   13篇
  2010年   20篇
  2009年   15篇
  2008年   12篇
  2007年   12篇
  2006年   12篇
  2005年   9篇
  2004年   11篇
  2003年   5篇
  2002年   7篇
  2001年   5篇
  2000年   7篇
  1999年   8篇
  1998年   6篇
  1997年   3篇
  1995年   4篇
  1993年   3篇
  1991年   4篇
  1990年   4篇
  1989年   5篇
  1988年   9篇
  1987年   3篇
  1986年   5篇
  1985年   2篇
  1984年   9篇
  1983年   6篇
  1980年   3篇
  1978年   3篇
  1977年   2篇
  1975年   5篇
  1974年   5篇
  1973年   5篇
  1972年   4篇
  1969年   2篇
  1968年   2篇
  1967年   2篇
  1966年   4篇
  1964年   2篇
  1960年   2篇
  1953年   2篇
排序方式: 共有347条查询结果,搜索用时 31 毫秒
101.
102.
103.
A mutation in the ALTERED XYLOGLUCAN9 (AXY9) gene was found to be causative for the decreased xyloglucan acetylation phenotype of the axy9.1 mutant, which was identified in a forward genetic screen for Arabidopsis (Arabidopsis thaliana) mutants. The axy9.1 mutant also exhibits decreased O-acetylation of xylan, implying that the AXY9 protein has a broad role in polysaccharide acetylation. An axy9 insertional mutant exhibits severe growth defects and collapsed xylem, demonstrating the importance of wall polysaccharide O-acetylation for normal plant growth and development. Localization and topological experiments indicate that the active site of the AXY9 protein resides within the Golgi lumen. The AXY9 protein appears to be a component of the plant cell wall polysaccharide acetylation pathway, which also includes the REDUCED WALL ACETYLATION and TRICHOME BIREFRINGENCE-LIKE proteins. The AXY9 protein is distinct from the TRICHOME BIREFRINGENCE-LIKE proteins, reported to be polysaccharide acetyltransferases, but does share homology with them and other acetyltransferases, suggesting that the AXY9 protein may act to produce an acetylated intermediate that is part of the O-acetylation pathway.The plant cell wall is a complex composite of polysaccharides, glycoproteins, and polyphenols, with the fine structure and quantity of each varying by species, tissue, and developmental time point (Knox, 2008; Burton et al., 2010). Cellulose, hemicelluloses, and pectic polysaccharides are the three major classes of polysaccharides observed in the wall. Current models of the wall have cellulose microfibrils as the major structural component, with hemicelluloses binding to the microfibrils and pectins as an amorphous matrix in which the cellulose/hemicellulose network is embedded (Pauly et al., 1999a; Somerville et al., 2004; Cosgrove, 2005). Unlike the linear β-1,4-glucan chains making up cellulose microfibrils, hemicelluloses and pectins consist of a diverse set of glycosyl units and linkages as well as other modifications such as methylation and acetylation (Caffall and Mohnen, 2009; Scheller and Ulvskov, 2010; Pauly et al., 2013).The O-acetyl substitutions on hemicelluloses and pectins occur on a variety of specific glycosyl residues. The hemicellulose xyloglucan (XyG) consists of a β-1,4-glucan backbone with a regular pattern of xylosyl branches, with additional galactosyl, fucosyl, arabinosyl, and/or galacturonosyl substitution depending on the tissue and plant species (Obel et al., 2009; Pauly et al., 2013; Schultink et al., 2014). XyG O-acetylation has been reported on the β-1,4-glucan backbone (Sims et al., 1996; York et al., 1996) as well as on specific galactosyl or arabinosyl side chains (Kiefer et al., 1989; Vierhuis et al., 2001). The hemicellulose xylan is heavily acetylated at positions O2 and O3 of the backbone β-1,4-xylosyl residues, with the degree of acetylation (O-acetyl groups per backbone of xylosyl residue) ranging from approximately 0.4 to 0.6 depending on the species (Teleman et al., 2002; Evtuguin et al., 2003; Prozil et al., 2012; Chong et al., 2014; Lee et al., 2014). The glycosyl substituents of xylan, including glucuronosyl, arabinosyl, and xylosyl groups, have not been reported to be acetylated. The backbone β-1,4-mannosyl residues of the hemicellulosic polysaccharide mannan also can be acetylated (Manna and McAnalley, 1993). The predominant location of O-acetyl groups in pectin has been reported to be on galacturonic acid residues at positions O2 and O3 (Ralet et al., 2005). O-Acetylation of pectin also has been observed on rhamnosyl (Sengkhamparn et al., 2009), fucosyl, and aceric acid residues (Glushka et al., 2003).The functional significance and biosynthetic pathway of wall polysaccharide O-acetylation are not fully understood. O-Acetylation has been shown to influence the solubility, gelation, and enzymatic accessibility of polysaccharides in vitro (Biely et al., 1986; Huang et al., 2002). These properties are likely to be important for appropriate function in planta. Recently identified Arabidopsis (Arabidopsis thaliana) mutants with polysaccharide O-acetylation deficiencies (reduced wall acetylation [rwa] and trichome birefringence-like [tbl]; Gille and Pauly, 2012) have allowed for testing of the in vivo role of this substituent. The ALTERED XYLOGLUCAN4 (AXY4 [TBL27]) gene from the TBL family was identified in a forward genetic screen of Arabidopsis and is believed to code for a XyG acetyltransferase (Gille et al., 2011). The growth morphology of this mutant, which lacks XyG O-acetylation in leaves, etiolated seedlings, and roots, was not affected under laboratory growth conditions. Arabidopsis mutants deficient for a putative xylan acetyltransferase (TBL29/ESKIMO1 [ESK1]) were reported to have reduced growth and irregular xylem and to be freezing tolerant (Xin et al., 2007; Xiong et al., 2013; Yuan et al., 2013). Arabidopsis mutants deficient for other TBL genes have been reported to exhibit phenotypes such as aberrant trichomes (Bischoff et al., 2010a) and resistance to powdery mildew (Vogel et al., 2004), but polysaccharide acetylation defects have not been demonstrated in these cases. The variation in the morphological phenotypes of different tbl mutants suggests that the function of polysaccharide acetylation is specific to the particular polysaccharide and tissue.While the TBL gene products seem to affect single wall polysaccharides, Arabidopsis mutants defective for one or more of the four RWA genes have decreased acetylation of multiple polysaccharides and growth phenotypes ranging from mild to severe (Lee et al., 2011; Manabe et al., 2011, 2013). For this reason, and because the RWA proteins are integral membrane proteins with 10 predicted transmembrane domains, it has been hypothesized that they may act as transporters for an activated form of acetate into the Golgi apparatus (Manabe et al., 2011). It has been demonstrated that acetyl-CoA is involved in the pathway of pectin acetylation (Pauly and Scheller, 2000); however, it is not clear if acetyl-CoA is transported into the Golgi or there is an alternative donor substrate that acts as a carrier.In this study, we report the identification and characterization of AXY9, an additional component of the plant cell wall polysaccharide acetylation pathway.  相似文献   
104.
We examine the basis of Darwin’s corollary to Haldane’s rule, which describes viability and fertility differences between F1 produced from reciprocal crosses. We analyzed asymmetries in hybrid viability from >100 reciprocal crosses involving 36 toad species to test whether relatively high rates of mitochondrial vs. nuclear evolution produce dams with systematically less viable F1 hybrid progeny. We find no such effect, suggesting a predominant role for stochastic accumulation of asymmetric epistatic incompatibilities.  相似文献   
105.
Gender dysphoria (also known as “transsexualism”) is characterized as a discrepancy between anatomical sex and gender identity. Research points towards neurobiological influences. Due to the sexually dimorphic characteristics of the human voice, voice gender perception provides a biologically relevant function, e.g. in the context of mating selection. There is evidence for a better recognition of voices of the opposite sex and a differentiation of the sexes in its underlying functional cerebral correlates, namely the prefrontal and middle temporal areas. This fMRI study investigated the neural correlates of voice gender perception in 32 male-to-female gender dysphoric individuals (MtFs) compared to 20 non-gender dysphoric men and 19 non-gender dysphoric women. Participants indicated the sex of 240 voice stimuli modified in semitone steps in the direction to the other gender. Compared to men and women, MtFs showed differences in a neural network including the medial prefrontal gyrus, the insula, and the precuneus when responding to male vs. female voices. With increased voice morphing men recruited more prefrontal areas compared to women and MtFs, while MtFs revealed a pattern more similar to women. On a behavioral and neuronal level, our results support the feeling of MtFs reporting they cannot identify with their assigned sex.  相似文献   
106.
The innate immune system is an ancient component of host defense. Since innate immunity pathways are well conserved throughout many eukaryotes, immune genes in model animals can be used to putatively identify homologous genes in newly sequenced genomes of non-model organisms. With the initiation of the “i5k” project, which aims to sequence 5,000 insect genomes by 2016, many novel insect genomes will soon become publicly available, yet few annotation resources are currently available for insects. Thus, we developed an online tool called the Insect Innate Immunity Database (IIID) to provide an open access resource for insect immunity and comparative biology research (http://www.vanderbilt.edu/IIID). The database provides users with simple exploratory tools to search the immune repertoires of five insect models (including Nasonia), spanning three orders, for specific immunity genes or genes within a particular immunity pathway. As a proof of principle, we used an initial database with only four insect models to annotate potential immune genes in the parasitoid wasp genus Nasonia. Results specify 306 putative immune genes in the genomes of N. vitripennis and its two sister species N. giraulti and N. longicornis. Of these genes, 146 were not found in previous annotations of Nasonia immunity genes. Combining these newly identified immune genes with those in previous annotations, Nasonia possess 489 putative immunity genes, the largest immune repertoire found in insects to date. While these computational predictions need to be complemented with functional studies, the IIID database can help initiate and augment annotations of the immune system in the plethora of insect genomes that will soon become available.  相似文献   
107.
Historical data are essential in fisheries management and conservation, especially for species that suffered significant population declines prior to ecological data collection. Within the field of historical marine ecology, studies have relied on anecdotal evidence, such as written accounts by explorers and interviews of different generations of resource users, to demonstrate the former abundance of certain species and the extent of their ranges. Yet, do we all agree on how these anecdotes are interpreted? This study examines the way that different people interpret anecdotes extracted from historical narratives. We outsource a survey to 50 randomly selected people using Amazon Mechanical Turk (www.mturk.com) and ask them to ‘code’ historical anecdotes based on their perceived abundance of species. We perform intercoder reliability tests to show that people''s perceptions of historical anecdotes are generally consistent. The results speak to the reliability of using people''s perceptions to acquire quantitative data, and provide novel insights into the use of anecdotal evidence to inform historical ecology.  相似文献   
108.
Competition between marine mammals and fisheries for marine resources-whether real or perceived-has become a major issue for several countries and in international fora. We examined trophic interactions between marine mammals and fisheries based on a resource overlap index, using seven Ecopath models including marine mammal groups. On a global scale, most food consumed by marine mammals consisted of prey types that were not the main target of fisheries. For each ecosystem, the primary production required (PPR) to sustain marine mammals was less than half the PPR to sustain fisheries catches. We also developed an index representing the mean trophic level of marine mammal's consumption (TL(Q)) and compared it with the mean trophic level of fisheries' catches (TL(C)). Our results showed that overall TL(Q) was lower than TL(C) (2.88 versus 3.42). As fisheries increasingly exploit lower-trophic level species, the competition with marine mammals may become more important. We used mixed trophic impact analysis to evaluate indirect trophic effects of marine mammals, and in some cases found beneficial effects on some prey. Finally, we assessed the change in the trophic structure of an ecosystem after a simulated extirpation of marine mammal populations. We found that this lead to alterations in the structure of the ecosystems, and that there was no clear and direct relationship between marine mammals' predation and the potential catch by fisheries. Indeed, total biomass, with no marine mammals in the ecosystem, generally remained surprisingly similar, or even decreased for some species.  相似文献   
109.
A burst of plant NADPH oxidases   总被引:2,自引:0,他引:2  
Reactive oxygen species (ROS) are highly reactive molecules able to damage cellular components but they also act as cell signalling elements. ROS are produced by many different enzymatic systems. Plant NADPH oxidases, also known as respiratory burst oxidase homologues (RBOHs), are the most thoroughly studied enzymatic ROS-generating systems and our understanding of their involvement in various plant processes has increased considerably in recent years. In this review we discuss their roles as ROS producers during cell growth, plant development and plant response to abiotic environmental constraints and biotic interactions, both pathogenic and symbiotic. This broad range of functions suggests that RBOHs may serve as important molecular 'hubs' during ROS-mediated signalling in plants.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号