全文获取类型
收费全文 | 372篇 |
免费 | 103篇 |
专业分类
475篇 |
出版年
2023年 | 2篇 |
2022年 | 3篇 |
2021年 | 6篇 |
2020年 | 2篇 |
2019年 | 2篇 |
2018年 | 9篇 |
2017年 | 6篇 |
2016年 | 7篇 |
2015年 | 14篇 |
2014年 | 15篇 |
2013年 | 22篇 |
2012年 | 25篇 |
2011年 | 24篇 |
2010年 | 16篇 |
2009年 | 21篇 |
2008年 | 17篇 |
2007年 | 24篇 |
2006年 | 29篇 |
2005年 | 23篇 |
2004年 | 16篇 |
2003年 | 13篇 |
2002年 | 13篇 |
2001年 | 11篇 |
2000年 | 11篇 |
1999年 | 9篇 |
1998年 | 7篇 |
1997年 | 6篇 |
1996年 | 5篇 |
1995年 | 8篇 |
1994年 | 5篇 |
1993年 | 13篇 |
1992年 | 11篇 |
1991年 | 7篇 |
1990年 | 15篇 |
1989年 | 7篇 |
1988年 | 4篇 |
1987年 | 5篇 |
1986年 | 4篇 |
1985年 | 5篇 |
1984年 | 3篇 |
1983年 | 2篇 |
1982年 | 3篇 |
1981年 | 2篇 |
1977年 | 3篇 |
1976年 | 5篇 |
1974年 | 4篇 |
1973年 | 3篇 |
1972年 | 1篇 |
1970年 | 3篇 |
1969年 | 1篇 |
排序方式: 共有475条查询结果,搜索用时 15 毫秒
81.
Olaf Brouwers Liang Yu Petra Niessen Jos Slenter Karolien Jaspers Allard Wagenaar Mark Post Toshio Miyata Walter Backes Coen Stehouwer Maya Huijberts Casper Schalkwijk 《Glycoconjugate journal》2016,33(4):627-630
We hypothesize that diabetes-induced impaired collateral formation after a hindlimb ligation in rats is in part caused by intracellular glycation and that overexpression of glyoxalase-I (GLO-I), i.e. the major detoxifying enzyme for advanced-glycation-endproduct (AGE) precursors, can prevent this. Wild-type and GLO-I transgenic rats with or without diabetes (induced by 55 mg/kg streptozotocin) were subjected to ligation of the right femoral artery. Laser Doppler perfusion imaging showed a significantly decreased blood perfusion recovery after 6 days in the diabetic animals compared with control animals, without any effect of Glo1 overexpression. In vivo time-of-flight magnetic resonance angiography at 7-Tesla showed a significant decrease in the number and volume of collaterals in the wild-type diabetic animals compared with the control animals. Glo1 overexpression partially prevented this decrease in the diabetic animals. Diabetes-induced impairment of arteriogenic adaptation can be partially rescued by overexpressing of GLO-I, indicating a role of AGEs in diabetes-induced impaired collateral formation. 相似文献
82.
83.
Low-level expression and reversion both contribute to reactivation of herpes simplex virus drug-resistant mutants with mutations on homopolymeric sequences in thymidine kinase 下载免费PDF全文
Many acyclovir-resistant herpes simplex virus isolates from patients contain insertions or deletions in homopolymeric sequences in the thymidine kinase (TK) gene (tk). Viruses that have one (G8) or two (G9) base insertions in a run of seven G's (G string) synthesize low levels of active TK (TK-low phenotype), evidently via ribosomal frameshifting. These levels of TK can suffice to permit reactivation from latently infected mouse ganglia, but in a majority of ganglia, especially with the G9 virus, reactivation of virus that has reverted to the TK-positive phenotype predominates. To help address the relative contributions of translational mechanisms and reversion in reactivation, we generated viruses with a base either inserted or deleted just downstream of the G string. Both of these viruses had a TK-low phenotype similar to that of the G8 and G9 viruses but with less reversion. Both of these viruses reactivated from latently infected trigeminal ganglia, albeit inefficiently, and most viruses that reactivated had a uniformly TK-low phenotype. We also generated viruses that have one insertion in a run of six C's or one deletion in a run of five C's. These viruses lack measurable TK activity. However, they reactivated from latently infected ganglia, albeit inefficiently, with the reactivating viruses having reverted to the wild-type TK phenotype. Therefore, for G-string mutants, levels of active TK as low as 0.25% generated by translational mechanisms can suffice for reactivation, but reversion can also contribute. For viruses that lack TK activity due to mutations on other homopolymeric sequences, reactivation can occur via reversion. 相似文献
84.
Coen G. Gho Timo Schomann Simon C. de Groot Johan H. M. Frijns Marcelo N. Rivolta Martino H. A. Neumann Margriet A. Huisman 《Cytotechnology》2016,68(5):1849-1858
Stem cells from the adult hair follicle bulge can differentiate into neurons and glia, which is advantageous for the development of an autologous cell-based therapy for neurological diseases. Consequently, bulge stem cells from plucked hair may increase opportunities for personalized neuroregenerative therapy. Hairs were plucked from the scalps of healthy donors, and the bulges were cultured without prior tissue treatment. Shortly after outgrowth from the bulge, cellular protein expression was established immunohistochemically. The doubling time was calculated upon expansion, and the viability of expanded, cryopreserved cells was assessed after shear stress. The neuroglial differentiation potential was assessed from cryopreserved cells. Shortly after outgrowth, the cells were immunopositive for nestin, SLUG, AP-2α and SOX9, and negative for SOX10. Each bulge yielded approximately 1 × 104 cells after three passages. Doubling time was 3.3 (±1.5) days. Cellular viability did not differ significantly from control cells after shear stress. The cells expressed class III β-tubulin (TUBB3) and synapsin-1 after 3 weeks of neuronal differentiation. Glial differentiation yielded KROX20- and MPZ-immunopositive cells after 2 weeks. We demonstrated that human hair follicle bulge-derived stem cells can be cultivated easily, expanded efficiently and kept frozen until needed. After cryopreservation, the cells were viable and displayed both neuronal and glial differentiation potential. 相似文献
85.
86.
87.
McLean RK Graham ID Bosompra K Choudhry Y Coen SE Macleod M Manuel C McCarthy R Mota A Peckham D Tetroe JM Tucker J 《Implementation science : IS》2012,7(1):57
ABSTRACT: BACKGROUND: The Canadian Institutes of Health Research (CIHR) has defined knowledge translation (KT) as a dynamic and iterative process that includes the synthesis, dissemination, exchange, and ethically-sound application of knowledge to improve the health of Canadians, provide more effective health services and products, and strengthen the healthcare system. CIHR, the national health research funding agency in Canada, has undertaken to advance this concept through direct research funding opportunities in KT. Because CIHR is recognized within Canada and internationally for leading and funding the advancement of KT science and practice, it is essential and timely to evaluate this intervention, and specifically, these funding opportunities. DESIGN: The study will employ a novel method of participatory, utilization-focused evaluation inspired by the principles of integrated KT. It will use a mixed methods approach, drawing on both quantitative and qualitative data, and will elicit participation from CIHR funded researchers, knowledge users, KT experts, as well as other health research funding agencies. Lines of inquiry will include an international environmental scan, document/data reviews, in-depth interviews, targeted surveys, case studies, and an expert review panel. The study will investigate how efficiently and effectively the CIHR model of KT funding programs operates, what immediate outcomes these funding mechanisms have produced, and what impact these programs have had on the broader state of health research, health research uptake, and health improvement. DISCUSSION: The protocol and results of this evaluation will be of interest to those engaged in the theory, practice, and evaluation of KT. The dissemination of the study protocol and results to both practitioners and theorists will help to fill a gap in knowledge in three areas: the role of a public research funding agency in facilitating KT, the outcomes and impacts KT funding interventions, and how KT can best be evaluated. 相似文献
88.
Coen van Solingen Elisa Araldi Aranzazu Chamorro‐Jorganes Carlos Fernández‐Hernando Yajaira Suárez 《Journal of cellular and molecular medicine》2014,18(6):1104-1112
Wound healing is a well-regulated but complex process that involves haemostasis, inflammation, proliferation and maturation. Recent reports suggest that microRNAs (miRs) play important roles in dermal wound healing. In fact, miR deregulation has been linked with impaired wound repair. miR-155 has been shown to be induced by inflammatory mediators and plays a central regulatory role in immune responses. We have investigated the potential role of miR-155 in wound healing. By creating punch wounds in the skin of mice, we found an increased expression of miR-155 in wound tissue when compared with healthy skin. Interestingly, analysis of wounds of mice lacking the expression of miR-155 (miR-155−/−) revealed an increased wound closure when compared with wild-type animals. Also, the accelerated wound closing correlated with elevated numbers of macrophages in wounded tissue. Gene expression analysis of wounds tissue and macrophages isolated from miR-155−/− mice that were treated with interleukin-4 demonstrated an increased expression of miR-155 targets (BCL6, RhoA and SHIP1) as well as, the finding in inflammatory zone-1 (FIZZ1) gene, when compared with WT mice. Moreover, the up-regulated levels of FIZZ1 in the wound tissue of miR-155−/− mice correlated with an increased deposition of type-1 collagens, a phenomenon known to be beneficial in wound closure. Our data indicate that the absence of miR-155 has beneficial effects in the wound healing process. 相似文献
89.
The mechanisms of processivity factors of herpesvirus DNA polymerases remain poorly understood. The proposed processivity factor for human cytomegalovirus DNA polymerase is a DNA-binding protein, UL44. Previous findings, including the crystal structure of UL44, have led to the hypothesis that UL44 binds DNA as a dimer via lysine residues. To understand how UL44 interacts with DNA, we used filter-binding and electrophoretic mobility shift assays and isothermal titration calorimetry (ITC) analysis of binding to oligonucleotides. UL44 bound directly to double-stranded DNA as short as 12bp, with apparent dissociation constants in the nanomolar range for DNAs >18bp, suggesting a minimum DNA length for UL44 interaction. UL44 also bound single-stranded DNA, albeit with lower affinity, and for either single- or double-stranded DNA, there was no apparent sequence specificity. ITC analysis revealed that UL44 binds to duplex DNA as a dimer. Binding was endothermic, indicating an entropically driven process, likely due to release of bound ions. Consistent with this hypothesis, analysis of the relationship between binding and ionic strength indicated that, on average, 4±1 monovalent ions are released in the interaction of each monomer of UL44 with DNA. The results taken together reveal interesting implications for how UL44 may mediate processivity. 相似文献
90.
Daniel N Düring Alexander Ziegler Christopher K Thompson Andreas Ziegler Cornelius Faber Johannes Müller Constance Scharff Coen PH Elemans 《BMC biology》2013,11(1):1-27