首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   372篇
  免费   103篇
  475篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   2篇
  2019年   2篇
  2018年   9篇
  2017年   6篇
  2016年   7篇
  2015年   14篇
  2014年   15篇
  2013年   22篇
  2012年   25篇
  2011年   24篇
  2010年   16篇
  2009年   21篇
  2008年   17篇
  2007年   24篇
  2006年   29篇
  2005年   23篇
  2004年   16篇
  2003年   13篇
  2002年   13篇
  2001年   11篇
  2000年   11篇
  1999年   9篇
  1998年   7篇
  1997年   6篇
  1996年   5篇
  1995年   8篇
  1994年   5篇
  1993年   13篇
  1992年   11篇
  1991年   7篇
  1990年   15篇
  1989年   7篇
  1988年   4篇
  1987年   5篇
  1986年   4篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1977年   3篇
  1976年   5篇
  1974年   4篇
  1973年   3篇
  1972年   1篇
  1970年   3篇
  1969年   1篇
排序方式: 共有475条查询结果,搜索用时 15 毫秒
81.
We hypothesize that diabetes-induced impaired collateral formation after a hindlimb ligation in rats is in part caused by intracellular glycation and that overexpression of glyoxalase-I (GLO-I), i.e. the major detoxifying enzyme for advanced-glycation-endproduct (AGE) precursors, can prevent this. Wild-type and GLO-I transgenic rats with or without diabetes (induced by 55 mg/kg streptozotocin) were subjected to ligation of the right femoral artery. Laser Doppler perfusion imaging showed a significantly decreased blood perfusion recovery after 6 days in the diabetic animals compared with control animals, without any effect of Glo1 overexpression. In vivo time-of-flight magnetic resonance angiography at 7-Tesla showed a significant decrease in the number and volume of collaterals in the wild-type diabetic animals compared with the control animals. Glo1 overexpression partially prevented this decrease in the diabetic animals. Diabetes-induced impairment of arteriogenic adaptation can be partially rescued by overexpressing of GLO-I, indicating a role of AGEs in diabetes-induced impaired collateral formation.  相似文献   
82.
83.
Many acyclovir-resistant herpes simplex virus isolates from patients contain insertions or deletions in homopolymeric sequences in the thymidine kinase (TK) gene (tk). Viruses that have one (G8) or two (G9) base insertions in a run of seven G's (G string) synthesize low levels of active TK (TK-low phenotype), evidently via ribosomal frameshifting. These levels of TK can suffice to permit reactivation from latently infected mouse ganglia, but in a majority of ganglia, especially with the G9 virus, reactivation of virus that has reverted to the TK-positive phenotype predominates. To help address the relative contributions of translational mechanisms and reversion in reactivation, we generated viruses with a base either inserted or deleted just downstream of the G string. Both of these viruses had a TK-low phenotype similar to that of the G8 and G9 viruses but with less reversion. Both of these viruses reactivated from latently infected trigeminal ganglia, albeit inefficiently, and most viruses that reactivated had a uniformly TK-low phenotype. We also generated viruses that have one insertion in a run of six C's or one deletion in a run of five C's. These viruses lack measurable TK activity. However, they reactivated from latently infected ganglia, albeit inefficiently, with the reactivating viruses having reverted to the wild-type TK phenotype. Therefore, for G-string mutants, levels of active TK as low as 0.25% generated by translational mechanisms can suffice for reactivation, but reversion can also contribute. For viruses that lack TK activity due to mutations on other homopolymeric sequences, reactivation can occur via reversion.  相似文献   
84.
Stem cells from the adult hair follicle bulge can differentiate into neurons and glia, which is advantageous for the development of an autologous cell-based therapy for neurological diseases. Consequently, bulge stem cells from plucked hair may increase opportunities for personalized neuroregenerative therapy. Hairs were plucked from the scalps of healthy donors, and the bulges were cultured without prior tissue treatment. Shortly after outgrowth from the bulge, cellular protein expression was established immunohistochemically. The doubling time was calculated upon expansion, and the viability of expanded, cryopreserved cells was assessed after shear stress. The neuroglial differentiation potential was assessed from cryopreserved cells. Shortly after outgrowth, the cells were immunopositive for nestin, SLUG, AP-2α and SOX9, and negative for SOX10. Each bulge yielded approximately 1 × 104 cells after three passages. Doubling time was 3.3 (±1.5) days. Cellular viability did not differ significantly from control cells after shear stress. The cells expressed class III β-tubulin (TUBB3) and synapsin-1 after 3 weeks of neuronal differentiation. Glial differentiation yielded KROX20- and MPZ-immunopositive cells after 2 weeks. We demonstrated that human hair follicle bulge-derived stem cells can be cultivated easily, expanded efficiently and kept frozen until needed. After cryopreservation, the cells were viable and displayed both neuronal and glial differentiation potential.  相似文献   
85.
86.
87.
ABSTRACT: BACKGROUND: The Canadian Institutes of Health Research (CIHR) has defined knowledge translation (KT) as a dynamic and iterative process that includes the synthesis, dissemination, exchange, and ethically-sound application of knowledge to improve the health of Canadians, provide more effective health services and products, and strengthen the healthcare system. CIHR, the national health research funding agency in Canada, has undertaken to advance this concept through direct research funding opportunities in KT. Because CIHR is recognized within Canada and internationally for leading and funding the advancement of KT science and practice, it is essential and timely to evaluate this intervention, and specifically, these funding opportunities. DESIGN: The study will employ a novel method of participatory, utilization-focused evaluation inspired by the principles of integrated KT. It will use a mixed methods approach, drawing on both quantitative and qualitative data, and will elicit participation from CIHR funded researchers, knowledge users, KT experts, as well as other health research funding agencies. Lines of inquiry will include an international environmental scan, document/data reviews, in-depth interviews, targeted surveys, case studies, and an expert review panel. The study will investigate how efficiently and effectively the CIHR model of KT funding programs operates, what immediate outcomes these funding mechanisms have produced, and what impact these programs have had on the broader state of health research, health research uptake, and health improvement. DISCUSSION: The protocol and results of this evaluation will be of interest to those engaged in the theory, practice, and evaluation of KT. The dissemination of the study protocol and results to both practitioners and theorists will help to fill a gap in knowledge in three areas: the role of a public research funding agency in facilitating KT, the outcomes and impacts KT funding interventions, and how KT can best be evaluated.  相似文献   
88.
Wound healing is a well-regulated but complex process that involves haemostasis, inflammation, proliferation and maturation. Recent reports suggest that microRNAs (miRs) play important roles in dermal wound healing. In fact, miR deregulation has been linked with impaired wound repair. miR-155 has been shown to be induced by inflammatory mediators and plays a central regulatory role in immune responses. We have investigated the potential role of miR-155 in wound healing. By creating punch wounds in the skin of mice, we found an increased expression of miR-155 in wound tissue when compared with healthy skin. Interestingly, analysis of wounds of mice lacking the expression of miR-155 (miR-155−/−) revealed an increased wound closure when compared with wild-type animals. Also, the accelerated wound closing correlated with elevated numbers of macrophages in wounded tissue. Gene expression analysis of wounds tissue and macrophages isolated from miR-155−/− mice that were treated with interleukin-4 demonstrated an increased expression of miR-155 targets (BCL6, RhoA and SHIP1) as well as, the finding in inflammatory zone-1 (FIZZ1) gene, when compared with WT mice. Moreover, the up-regulated levels of FIZZ1 in the wound tissue of miR-155−/− mice correlated with an increased deposition of type-1 collagens, a phenomenon known to be beneficial in wound closure. Our data indicate that the absence of miR-155 has beneficial effects in the wound healing process.  相似文献   
89.
The mechanisms of processivity factors of herpesvirus DNA polymerases remain poorly understood. The proposed processivity factor for human cytomegalovirus DNA polymerase is a DNA-binding protein, UL44. Previous findings, including the crystal structure of UL44, have led to the hypothesis that UL44 binds DNA as a dimer via lysine residues. To understand how UL44 interacts with DNA, we used filter-binding and electrophoretic mobility shift assays and isothermal titration calorimetry (ITC) analysis of binding to oligonucleotides. UL44 bound directly to double-stranded DNA as short as 12bp, with apparent dissociation constants in the nanomolar range for DNAs >18bp, suggesting a minimum DNA length for UL44 interaction. UL44 also bound single-stranded DNA, albeit with lower affinity, and for either single- or double-stranded DNA, there was no apparent sequence specificity. ITC analysis revealed that UL44 binds to duplex DNA as a dimer. Binding was endothermic, indicating an entropically driven process, likely due to release of bound ions. Consistent with this hypothesis, analysis of the relationship between binding and ionic strength indicated that, on average, 4±1 monovalent ions are released in the interaction of each monomer of UL44 with DNA. The results taken together reveal interesting implications for how UL44 may mediate processivity.  相似文献   
90.

Background

Like human infants, songbirds learn their species-specific vocalizations through imitation learning. The birdsong system has emerged as a widely used experimental animal model for understanding the underlying neural mechanisms responsible for vocal production learning. However, how neural impulses are translated into the precise motor behavior of the complex vocal organ (syrinx) to create song is poorly understood. First and foremost, we lack a detailed understanding of syringeal morphology.

Results

To fill this gap we combined non-invasive (high-field magnetic resonance imaging and micro-computed tomography) and invasive techniques (histology and micro-dissection) to construct the annotated high-resolution three-dimensional dataset, or morphome, of the zebra finch (Taeniopygia guttata) syrinx. We identified and annotated syringeal cartilage, bone and musculature in situ in unprecedented detail. We provide interactive three-dimensional models that greatly improve the communication of complex morphological data and our understanding of syringeal function in general.

Conclusions

Our results show that the syringeal skeleton is optimized for low weight driven by physiological constraints on song production. The present refinement of muscle organization and identity elucidates how apposed muscles actuate different syringeal elements. Our dataset allows for more precise predictions about muscle co-activation and synergies and has important implications for muscle activity and stimulation experiments. We also demonstrate how the syrinx can be stabilized during song to reduce mechanical noise and, as such, enhance repetitive execution of stereotypic motor patterns. In addition, we identify a cartilaginous structure suited to play a crucial role in the uncoupling of sound frequency and amplitude control, which permits a novel explanation of the evolutionary success of songbirds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号