首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   371篇
  免费   43篇
  414篇
  2021年   6篇
  2020年   3篇
  2019年   3篇
  2018年   6篇
  2016年   3篇
  2015年   9篇
  2014年   10篇
  2013年   27篇
  2012年   22篇
  2011年   15篇
  2010年   19篇
  2009年   6篇
  2008年   13篇
  2007年   14篇
  2006年   15篇
  2005年   16篇
  2004年   17篇
  2003年   14篇
  2002年   14篇
  2001年   9篇
  2000年   5篇
  1999年   10篇
  1998年   9篇
  1996年   2篇
  1995年   2篇
  1993年   4篇
  1992年   14篇
  1991年   6篇
  1990年   11篇
  1989年   14篇
  1988年   7篇
  1987年   9篇
  1986年   8篇
  1985年   10篇
  1984年   9篇
  1983年   7篇
  1982年   5篇
  1980年   2篇
  1979年   7篇
  1978年   3篇
  1977年   5篇
  1974年   3篇
  1973年   3篇
  1972年   3篇
  1969年   2篇
  1966年   1篇
  1965年   1篇
  1961年   1篇
  1960年   1篇
  1954年   1篇
排序方式: 共有414条查询结果,搜索用时 15 毫秒
21.
22.
Ataxin-3, a deubiquitinating enzyme, is the disease protein in spinocerebellar ataxia type 3, one of many neurodegenerative disorders caused by polyglutamine expansion. Little is known about the cellular regulation of ataxin-3. This is an important issue, since growing evidence links disease protein context to pathogenesis in polyglutamine disorders. Expanded ataxin-3, for example, is more neurotoxic in fruit fly models when its active site cysteine is mutated (1). We therefore sought to determine the influence of ataxin-3 enzymatic activity on various cellular properties. Here we present evidence that the catalytic activity of ataxin-3 regulates its cellular turnover, ubiquitination, and subcellular distribution. Cellular protein levels of catalytically inactive ataxin-3 were much higher than those of active ataxin-3, in part reflecting slower degradation. In vitro studies revealed that inactive ataxin-3 was more slowly degraded by the proteasome and that this degradation occurred independent of ubiquitination. Slower degradation of inactive ataxin-3 correlated with reduced interaction with the proteasome shuttle protein, VCP/p97. Enzymatically active ataxin-3 also showed a greater tendency to concentrate in the nucleus, where it colocalized with the proteasome in subnuclear foci. Taken together, these and other findings suggest that the catalytic activity of this disease-linked deubiquitinating enzyme regulates several of its cellular properties, which in turn may influence disease pathogenesis.  相似文献   
23.
Taniguchi N  Paulson JC 《Proteomics》2007,7(9):1360-1363
This is a short summary of a meeting entitled "The Frontiers in Glycomics; Bioinformatics and Biomarkers in Disease" which was jointly organized by the NIH Consortium for Functional Glycomics (CFG), Human Disease Glycomics/Proteome Initiative (HGPI), National Cancer Institute, National Institute of General Medical Sciences, Japan Society for the Promotion of Science and National Center for Research Resources held at the NIH Campus, Bethesda, MD, Natcher Conference Center in September 11-13, 2006.  相似文献   
24.
25.
In comparison with genomics and proteomics, the advancement of glycomics has faced unique challenges in the pursuit of developing analytical and biochemical tools and biological readouts to investigate glycan structure-function relationships. Glycans are more diverse in terms of chemical structure and information density than are DNA and proteins. This diversity arises from glycans' complex nontemplate-based biosynthesis, which involves several enzymes and isoforms of these enzymes. Consequently, glycans are expressed as an 'ensemble' of structures that mediate function. Moreover, unlike protein-protein interactions, which can be generally viewed as 'digital' in regulating function, glycan-protein interactions impinge on biological functions in a more 'analog' fashion that can in turn 'fine-tune' a biological response. This fine-tuning by glycans is achieved through the graded affinity, avidity and multivalency of their interactions. Given the importance of glycomics, this review focuses on areas of technologies and the importance of developing a bioinformatics platform to integrate the diverse datasets generated using the different technologies to allow a systems approach to glycan structure-function relationships.  相似文献   
26.
SDS-polyacrylamide gel electrophoresis was used to separate the secretory proteins produced by the epithelial and endometrial glands of the uterine tube and uterus in the snapping turtle Chelydra serpentina. The proteins were analyzed throughout the phases of the reproductive cycle from May to August, including preovulatory, ovulatory, postovulatory or luteal, and vitellogenic phases. The pattern of secretory proteins is quite uniform along the length of the uterine tube, and the same is true of the uterus, but the patterns for uterine tube and uterus are clearly different. We identify 13 major proteins in C. serpentina egg albumen. Bands co-migrating with 11 of these are found in the uterine tube, but at most 4 are found in the uterus, suggesting that the majority of the albumen proteins are most likely secreted in the uterine tube, not in the uterus. Although some of the egg albumen proteins are present in the uterine tube only at the time of ovulation, most of the bands corresponding to albumen proteins are present throughout the breeding season even though the snapping turtle is a monoclutch species. These results suggest that the glandular secretory phase in the uterine tube is active and quite homogeneous in function regardless of location or phase of the reproductive cycle.  相似文献   
27.
28.
We have previously described a new aspect of the Inhibitor of Apoptosis (IAP) family of proteins anti-apoptotic activity that involves the TAK1/JNK1 signal transduction pathway (1,2). Our findings suggest the existence of a novel mechanism that regulates the anti-apoptotic activity of IAPs that is separate from caspase inhibition but instead involves TAK1-mediated activation of JNK1. In a search for proteins involved in the XIAP/TAK1/JNK1 signaling pathway we isolated by yeast two-hybrid screening a novel X chromosome-linked IAP (XIAP)-interacting protein that we called ILPIP (hILP-Interacting Protein). Whereas ILPIP moderately activates JNK family members when expressed alone, it strongly enhances XIAP-mediated activation of JNK1, JNK2, and JNK3. The expression of a catalytically inactive mutant of TAK1 blocked XIAP/ILPIP synergistic activation of JNK1 thereby implicating TAK1 in this signaling pathway. ILPIP moderately protects against interleukin-1beta converting enzyme- or Fas-induced apoptosis and significantly potentiates the anti-apoptotic activity of XIAP. In vivo co-precipitation experiments show that both ILPIP and XIAP interact with TAK1 and tumor necrosis factor receptor-associated factor 6. Finally, expression of ILPIP did not affect the ability of XIAP to inhibit caspase activation, further supporting the idea that XIAP protection against apoptosis is achieved by two separate mechanisms: one requiring JNK1 activation and a second involving caspase inhibition.  相似文献   
29.
Clinical mass spectrometry in neuroscience. Proteomics and peptidomics.   总被引:2,自引:0,他引:2  
In this review we discuss the merits and drawbacks with the use of proteomic and peptidomic strategies for identification of proteins and peptides in their multidimensional interactions in complex biological processes. The progress in proteomics and peptidomics during the last years offer us new challenges to study changes in the protein and peptide synthesis. These strategies also offer new tools to follow post-translational modifications and other disturbed chemical processes that may be indicative of pathophysiological alteration(s). Furthermore these techniques can contribute to improvements in the diagnosis and therapy of neurodegenerative diseases, such as Alzheimer's disease, and psychiatric diseases, as depression and post traumatic stress disorders. We also consider different practical aspects of the applications of mass spectrometry in clinical neuroscience, illustrated by example from our laboratories. The new proteomic and peptidomic strategies will further enable the progress for clinical neuroscience research.  相似文献   
30.
The usefulness of isolated Ca2+-tolerant myocytes as a cellular model system for investigating modulation of monosaccharide transport by insulin was investigated. We have found that the isolation technique described by Haworth et al. (Haworth, R.A., Hunter, D.R. and Berkoff, H.A. (1980) J. Mol. Cell. Cardiol. 12, 715–724), with some minor modifications, consistently gave the highest yield of quiescent, rod-shaped myocytes which maintained their integrity in the presence of 2 mM calcium. Using 3-O-methylglucose, a non-metabolized sugar, transport was shown to possess saturability, substrate stereospecificity, competition and countertransport; all of which have been thoroughly established for d-glucose transport in other systems. The apparent Km of transport ranged from 2.3 to 3.5 mM. Insulin (10 nM) caused a small but significant increase in Km and a 2–3-fold increase in Vmax. These results suggest that this myocyte preparation will provide a useful model for studying the transport-related effects of insulin as well as current hypotheses regarding the mechanism of insulin modulation of transport at the cellular level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号