首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   431篇
  免费   46篇
  2022年   2篇
  2021年   8篇
  2020年   4篇
  2019年   3篇
  2018年   7篇
  2016年   5篇
  2015年   15篇
  2014年   15篇
  2013年   33篇
  2012年   23篇
  2011年   14篇
  2010年   20篇
  2009年   5篇
  2008年   15篇
  2007年   16篇
  2006年   16篇
  2005年   18篇
  2004年   18篇
  2003年   15篇
  2002年   18篇
  2001年   10篇
  2000年   7篇
  1999年   12篇
  1998年   13篇
  1997年   3篇
  1996年   4篇
  1995年   6篇
  1994年   2篇
  1993年   4篇
  1992年   14篇
  1991年   6篇
  1990年   10篇
  1989年   13篇
  1988年   7篇
  1987年   10篇
  1986年   9篇
  1985年   11篇
  1984年   8篇
  1983年   7篇
  1982年   6篇
  1981年   3篇
  1980年   4篇
  1979年   7篇
  1978年   3篇
  1977年   7篇
  1974年   3篇
  1973年   3篇
  1972年   4篇
  1969年   2篇
  1954年   1篇
排序方式: 共有477条查询结果,搜索用时 15 毫秒
141.
Myelin-associated glycoprotein (MAG, Siglec-4) is one of several endogenous axon regeneration inhibitors that limit recovery from central nervous system injury and disease. Molecules that block such inhibitors may enhance axon regeneration and functional recovery. MAG, a member of the Siglec family of sialic acid-binding lectins, binds to sialoglycoconjugates on axons and particularly to gangliosides GD1a and GT1b, which may mediate some of the inhibitory effects of MAG. In a prior study, we identified potent monovalent sialoside inhibitors of MAG using a novel screening platform. In the current study, the most potent of these were tested for their ability to reverse MAG-mediated inhibition of axon outgrowth from rat cerebellar granule neurons in vitro. Monovalent sialoglycans enhanced axon regeneration in proportion to their MAG binding affinities. The most potent glycoside was disialyl T antigen (NeuAcalpha2-3Galbeta1-3[NeuAcalpha2-6]GalNAc-R), followed by 3-sialyl T antigen (NeuAcalpha2-3Galbeta1-3GalNAc-R), structures expressed on O-linked glycoproteins as well as on gangliosides. Prior studies indicated that blocking gangliosides reversed MAG inhibition. In the current study, blocking O-linked glycoprotein sialylation with benzyl-alpha-GalNAc had no effect. The ability to reverse MAG inhibition with monovalent glycosides encourages further exploration of glycans and glycan mimetics as blockers of MAG-mediated axon outgrowth inhibition.  相似文献   
142.
Tateno H  Crocker PR  Paulson JC 《Glycobiology》2005,15(11):1125-1135
Mouse sialic acid-binding immunoglobulin-like lectin F (Siglec-F) is an eosinophil surface receptor, which contains an immunoreceptor tyrosine-based inhibitory motif (ITIM) in its cytoplasmic domain, implicating it as a regulator of cell signaling as documented for other siglecs. Here, we show that the sialoside sequence 6'-sulfo-sLe(X) (Neu5Acalpha2-3[6-SO4] Galbeta1-4[Fucalpha1-3]GlcNAc) is a preferred ligand for Siglec-F. In glycan array analysis of 172 glycans, recombinant Siglec-F-Fc chimeras bound with the highest avidity to 6'-sulfo-sLe X. Secondary analysis showed that related structures, sialyl-Lewis X (sLe X) and 6-sulfo-sLe X containing 6-GlcNAc-SO4 showed much lower binding avidity, indicating significant contribution of 6-Gal-SO4 on Siglec-F binding to 6'-sulfo-sLe x. The lectin activity of Siglec-F on mouse eosinophils was "masked" by endogenous cis ligands and could be unmasked by treatment with sialidase. Unmasked Siglec-F mediated mouse eosinophil binding and adhesion to multivalent 6'-sulfo-sLe X structure, and these interactions were inhibited by anti-Siglec-F monoclonal antibody (mAb). Although there is no clear-cut human ortholog of Siglec-F, Siglec-8 is encoded by a paralogous gene that is expressed selectively by human eosinophils and has recently been found to recognize 6'-sulfo-sLe X. These observations suggest that mouse Siglec-F and human Siglec-8 have undergone functional convergence during evolution and implicate a role for the interaction of these siglecs with their preferred 6'-sulfo-sLe X ligand in eosinophil biology.  相似文献   
143.
Polyglutamine (polyQ) expansions cause neurodegeneration that is associated with protein misfolding and influenced by functional properties of the host protein. The polyQ disease protein, ataxin-3, has predicted ubiquitin-specific protease and ubiquitin-binding domains, which suggest that ataxin-3 functions in ubiquitin-dependent protein surveillance. Here we investigate direct links between the ubiquitin-proteasome pathway and ataxin-3. In neural cells we show that, through its ubiquitin interaction motifs (UIMs), normal or expanded ataxin-3 binds a broad range of ubiquitinated proteins that accumulate when the proteasome is inhibited. The expression of a catalytically inactive ataxin-3 (normal or expanded) causes ubiquitinated proteins to accumulate in cells, even in the absence of proteasome inhibitor. This accumulation of ubiquitinated proteins occurs primarily in the cell nucleus in transfected cells and requires intact UIMs in ataxin-3. We further show that both normal and expanded ataxin-3 can undergo oligoubiquitination. Although this post-translational modification occurs in a UIM-dependent manner, it becomes independent of UIMs when the catalytic cysteine residue of ataxin-3 is mutated, suggesting that ataxin-3 ubiquitination is itself regulated in trans by its own de-ubiquitinating activity. Finally, pulse-chase labeling reveals that ataxin-3 is degraded by the proteasome, with expanded ataxin-3 being as efficiently degraded as normal ataxin-3. Mutating the UIMs does not alter degradation, suggesting that UIM-mediated oligoubiquitination of ataxin-3 modulates ataxin-3 function rather than stability. The function of ataxin-3 as a de-ubiquitinating enzyme, its post-translational modification by ubiquitin, and its degradation via the proteasome link this polyQ protein to ubiquitin-dependent pathways already implicated in disease pathogenesis.  相似文献   
144.
beta-Site amyloid precursor protein-cleaving enzyme 1 (BACE1) is a membrane-bound aspartic protease that cleaves amyloid precursor protein to produce a neurotoxic peptide, Abeta, and is implicated in triggering the pathogenesis of Alzheimer disease. We previously reported that BACE1 cleaved rat beta-galactoside alpha2,6-sialyltransferase (ST6Gal I) that was overexpressed in COS cells and that the NH(2) terminus of ST6Gal I secreted from the cells (E41 form) was Glu(41). Here we report that BACE1 gene knock-out mice have one third as much plasma ST6Gal I as control mice, indicating that BACE1 is a major protease which is responsible for cleaving ST6Gal I in vivo. We also found that BACE1-transgenic mice have increased level of ST6Gal I in plasma. Secretion of ST6Gal I from the liver into the plasma is known to be up-regulated during the acute-phase response. To investigate the role of BACE1 in ST6Gal I secretion in vivo, we analyzed the levels of BACE1 mRNA in the liver, as well as the plasma levels of ST6Gal I, in a hepatopathological model, i.e. Long-Evans Cinnamon (LEC) rats. This rat is a mutant that spontaneously accumulates copper in the liver and incurs hepatic damage. LEC rats exhibited simultaneous increases in BACE1 mRNA in the liver and in the E41 form of the ST6Gal I protein, the BACE1 product, in plasma as early as 6 weeks of age, again suggesting that BACE1 cleaves ST6Gal I in vivo and controls the secretion of the E41 form.  相似文献   
145.

Introduction  

The objective of this study was to determine whether serum biomarkers for degradation and synthesis of the extracellular matrix of cartilage are associated with, and can predict, radiographic damage in patients with rheumatoid arthritis (RA).  相似文献   
146.
Glycan-binding proteins mediate diverse aspects of cell biology including pathogen recognition of host cells, cell trafficking, endocytosis and modulation of cell signaling. This is accomplished despite the intrinsic low affinity for their ligands through multivalent interactions that increase effective affinity and adhesive force. Recent successes in the rational design of high-affinity ligands for glycan-binding proteins offer the promise to create well-defined tools for exploring the structure and functions of this class of receptors.  相似文献   
147.
A unique representation of heat allodynia in the human brain   总被引:10,自引:0,他引:10  
Skin inflammation causes innocuous heat to become painful. This condition, called heat allodynia, is a common feature of pathological pain states. Here, we show that heat allodynia is functionally and neuroanatomically distinct from normal heat pain. We subtracted positron emission tomography scans obtained during painful heating of normal skin from scans during equally intense but normally innocuous heating of capsaicin-treated skin. This comparison reveals the specific activation of a medial thalamic pathway to the frontal lobe during heat allodynia. The results suggest that different central pathways mediate the intensity and certain qualitative aspects of pain. In making this differentiation, the brain recognizes unique physiological features of different painful conditions, thus permitting adaptive responses to different pain states.  相似文献   
148.
Nuclear magnetic resonance spectroscopy demonstrates that the rhesus rotavirus hemagglutinin specifically binds alpha-anomeric N-acetylneuraminic acid with a K(d) of 1.2 mM. The hemagglutinin requires no additional carbohydrate moieties for binding, does not distinguish 3' from 6' sialyllactose, and has approximately tenfold lower affinity for N-glycolylneuraminic than for N-acetylneuraminic acid. The broad specificity and low affinity of sialic acid binding by the rotavirus hemagglutinin are consistent with this interaction mediating initial cell attachment prior to the interactions that determine host range and cell type specificity.  相似文献   
149.
150.
The objective of this study was to examine three dimensionally the embryonic and fetal stages of tongue development with scanning electron microscopy. Time-bred CD-1 mice were sacrificed at quarter-day intervals on days 10-13, and at half-day intervals on days 13.5-16.5 of gestation. Fetal tongues were dissected and fixed in s-collidine buffered 4% glutaraldehyde at pH7.4, and subsequently processed for SEM viewing. Tongue development was initiated on the 11th day by the appearance of the tuberculum impar and the two lateral lingual swellings on arch I. This was followed by the elevation of the hypobranchial eminence, which unites arches III and IV in the ventral midline, and overgrows arch II anteriorly. During the 12th day, remodeling occurred in areas of arches II and III, forming the root of the tongue. A cone-shaped midline swelling, the epiglottis, appeared in the ventral midline of arches III and IV. By the 13th day, the general proportions of the tongue, occupied by the body, root, and epiglottis, were established. The single circumvallate papilla and fungiform papillae were initiated during the early part of the 13th day, followed on the 15th day by differentiation of filiform and foliate papillae and raised nodules of lingual tonsilar tissue. The SEM study documented the temporal and morphological sequence of events during mouse tongue development. The tuberculum impar persisted to the late fetal stages and may therefore contribute largely to the dorsum of the tongue anterior to the circumvallate papilla.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号