首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   621篇
  免费   54篇
  2021年   8篇
  2020年   3篇
  2019年   5篇
  2018年   11篇
  2017年   7篇
  2016年   4篇
  2015年   22篇
  2014年   20篇
  2013年   22篇
  2012年   32篇
  2011年   29篇
  2010年   19篇
  2009年   20篇
  2008年   23篇
  2007年   28篇
  2006年   34篇
  2005年   33篇
  2004年   20篇
  2003年   22篇
  2002年   25篇
  2001年   23篇
  2000年   30篇
  1999年   17篇
  1998年   8篇
  1997年   7篇
  1996年   11篇
  1995年   14篇
  1994年   9篇
  1993年   7篇
  1992年   20篇
  1991年   8篇
  1990年   14篇
  1989年   4篇
  1988年   15篇
  1987年   6篇
  1986年   13篇
  1985年   4篇
  1984年   11篇
  1983年   6篇
  1982年   7篇
  1980年   3篇
  1979年   7篇
  1978年   9篇
  1977年   7篇
  1974年   4篇
  1972年   2篇
  1971年   2篇
  1969年   2篇
  1966年   2篇
  1958年   2篇
排序方式: 共有675条查询结果,搜索用时 406 毫秒
11.
Proton-dependent multidrug efflux systems.   总被引:26,自引:0,他引:26       下载免费PDF全文
Multidrug efflux systems display the ability to transport a variety of structurally unrelated drugs from a cell and consequently are capable of conferring resistance to a diverse range of chemotherapeutic agents. This review examines multidrug efflux systems which use the proton motive force to drive drug transport. These proteins are likely to operate as multidrug/proton antiporters and have been identified in both prokaryotes and eukaryotes. Such proton-dependent multidrug efflux proteins belong to three distinct families or superfamilies of transport proteins: the major facilitator superfamily (MFS), the small multidrug resistance (SMR) family, and the resistance/ nodulation/cell division (RND) family. The MFS consists of symporters, antiporters, and uniporters with either 12 or 14 transmembrane-spanning segments (TMS), and we show that within the MFS, three separate families include various multidrug/proton antiport proteins. The SMR family consists of proteins with four TMS, and the multidrug efflux proteins within this family are the smallest known secondary transporters. The RND family consists of 12-TMS transport proteins and includes a number of multidrug efflux proteins with particularly broad substrate specificity. In gram-negative bacteria, some multidrug efflux systems require two auxiliary constituents, which might enable drug transport to occur across both membranes of the cell envelope. These auxiliary constituents belong to the membrane fusion protein and the outer membrane factor families, respectively. This review examines in detail each of the characterized proton-linked multidrug efflux systems. The molecular basis of the broad substrate specificity of these transporters is discussed. The surprisingly wide distribution of multidrug efflux systems and their multiplicity in single organisms, with Escherichia coli, for instance, possessing at least nine proton-dependent multidrug efflux systems with overlapping specificities, is examined. We also discuss whether the normal physiological role of the multidrug efflux systems is to protect the cell from toxic compounds or whether they fulfil primary functions unrelated to drug resistance and only efflux multiple drugs fortuitously or opportunistically.  相似文献   
12.
A Huber  P Sander  A Gobert  M Bhner  R Hermann    R Paulsen 《The EMBO journal》1996,15(24):7036-7045
The transient receptor potential protein (Trp) is a putative capacitative Ca2+ entry channel present in fly photoreceptors, which use the inositol 1,4,5-trisphosphate (InsP3) signaling pathway for phototransduction. By immunoprecipitation studies, we find that Trp is associated into a multiprotein complex with the norpA-encoded phospholipase C, an eye-specific protein kinase C (InaC) and with the InaD protein (InaD). InaD is a putative substrate of InaC and contains two PDZ repeats, putative protein-protein interaction domains. These proteins are present in the photoreceptor membrane at about equimolar ratios. The Trp homolog analyzed here is isolated together with NorpA, InaC and InaD from blowfly (Calliphora) photoreceptors. Compared to Drosophila Trp, the Calliphora Trp homolog displays 77% amino acid identity. The highest sequence conservation is found in the region that contains the putative transmembrane domains S1-S6 (91% amino acid identity). As investigated by immunogold labeling with specific antibodies directed against Trp and InaD, the Trp signaling complex is located in the microvillar membranes of the photoreceptor cells. The spatial distribution of the signaling complex argues against a direct conformational coupling of Trp to an InsP3 receptor supposed to be present in the membrane of internal photoreceptor Ca2+ stores. It is suggested that the organization of signal transducing proteins into a multiprotein complex provides the structural basis for an efficient and fast activation and regulation of Ca2+ entry through the Trp channel.  相似文献   
13.
S Hobe  S Prytulla  W Kühlbrandt    H Paulsen 《The EMBO journal》1994,13(15):3423-3429
The major light-harvesting complex (LHCII) of photosystem II, the most abundant chlorophyll-containing complex in higher plants, is organized in trimers. In this paper we show that the trimerization of LHCII occurs spontaneously and is dependent on the presence of lipids. LHCII monomers were reconstituted from the purified apoprotein (LHCP), overexpressed in Escherichia coli, and pigments, purified from chloroplast membranes. These synthetic LHCII monomers trimerize in vitro in the presence of a lipid fraction isolated from pea thylakoids. The reconstituted LHCII trimers are very similar to native LHCII trimers in that they are stable in the presence of mild detergents and can be isolated by partially denaturing gel electrophoresis or by centrifugation in sucrose density gradients. Moreover, both native and reconstituted LHCII trimers exhibit signals in circular dichroism in the visible range that are not seen in native or reconstituted LHCII monomers, indicating that trimer formation either establishes additional pigment-pigment interactions or alters pre-existing interactions. Reconstituted LHCII trimers readily form two-dimensional crystals that appear to be identical to crystals of the native complex.  相似文献   
14.
UDP-GlcNAc: Man1-6R (1-2)-N-acetylglucosaminyltransferase II (GlcNAc-T II; EC 2.4.1.143) is a key enzyme in the synthesis of complexN-glycans. We have tested a series of synthetic analogues of the substrate Man1-6(GlcNAc1-2Man1-3)Man-O-octyl as substrates and inhibitors for rat liver GlcNAc-T II. The enzyme attachesN-acetylglucosamine in 1-2 linkage to the 2-OH of the Man1-6 residue. The 2-deoxy analogue is a competitive inhibitor (K i=0.13mm). The 2-O-methyl compound does not bind to the enzyme presumably due to steric hindrance. The 3-, 4- and 6-OH groups are not essential for binding or catalysis since the 3-, 4- and 6-deoxy and -O-methyl derivatives are all good substrates. Increasing the size of the substituent at the 3-position to pentyl and substituted pentyl groups causes competitive inhibition (K i=1.0–2.5mm). We have taken advantage of this effect to synthesize two potentially irreversible GlcNAc-T II inhibitors containing a photolabile 3-O-(4,4-azo)pentyl group and a 3-O-(5-iodoacetamido)pentyl group respectively. The data indicate that none of the hydroxyls of the Man1-6 residue are essential for binding although the 2- and 3-OH face the catalytic site of the enzyme. The 4-OH group of the Man-O-octyl residue is not essential for binding or catalysis since the 4-deoxy derivative is a good substrate; the 4-O-methyl derivative does not bind. This contrasts with GlcNAc-T I which cannot bind to the 4-deoxy-Man- substrate analogue. The data are compatible with our previous observations that a bisectingN-acetylglucosamine at the 4-OH position prevents both GlcNAc-T I and GlcNAc-T II catalysis. However, in the case of GlcNAc-T II, the bisectingN-acetylglucosamine prevents binding due to steric hindrance rather than to removal of an essential OH group. The 3-OH of the Man1-3 is an essential group for GlcNAc-T II since the 3-deoxy derivative does not bind to the enzyme. The trisaccharide GlcNAc1-2Man1-3Man-O-octyl is a good inhibitor (K i=0.9mm). The above data together with previous studies indicate that binding of the GlcNAc1-2Man1-3Man- arm of the branched substrate to the enzyme is essential for catalysis. Abbreviations: GlcNAc-T I, UDP-GlcNAc:Man1-3R (1-2)-N-acetylglucosaminyltransferase I (EC 2.4.1.101); GlcNAc-T II, UDP-GlcNAc:Man1-6R (1-2)-N-acetylglucosaminyltransferase II (EC 2.4.1.143); MES, 2-(N-morpholino)ethane sulfonic acid monohydrate.  相似文献   
15.
Morphogenesis of the clearnose skate, Raja eglanteria, was not significantly inhibited as a result of 7 days of exposure to 1-2 mM selenate in the sea water during Days 59-69 of embryonic development (hatching would normally have occurred at 82 +/- 4 days of incubation). Although corneal transparency appeared normal in the eye, preliminary measurements of the thickness of Bowman's layer of the cornea suggested that it was significantly thinner in the corneas of embryos exposed to 1-2 mM selenate. Selenate is an ion reported to inhibit sulfation of glycosaminoglycans in connective tissue.  相似文献   
16.
The cytoskeleton of columella cells is believed to be involved in maintaining the developmental polarity of cells observed as a reproducible positioning of cellular organelles. It is also implicated in the transduction of gravitropic signals. Roots of sweet clover ( Melilotus alba L.) seedlings were treated with a microfilament disrupter, cytochalasin D, on a slowly rotating horizontal clinostat (2 rpm). Electron micrographs of treated columella cells revealed several ultrastructural effects including repositioning of the nucleus and the amyloplasts and the formation of endoplasmic reticulum (ER) whorls. However, experiments performed during fast clinorotation (55 rpm) showed an accumulation (but no whorling) of a disorganized ER network at the proximal and distal pole and a random distribution of the amyloplasts. Therefore, formation of whorls depends upon the speed of clinorotation, and the overall impact of cytochalasin D suggests the necessity of microfilaments in organelle positioning. Interestingly, a similar drug treatment performed in microgravity aboard the US Space Shuttle Endeavour (STS-54, January 1993) caused a displacement of ER membranes and amyloplasts away from the distal plasma membrane. In the present study, we discuss the role of microfilaments in maintaining columella cell polarity and the utility of clinostats to simulate microgravity.  相似文献   
17.
Electron micrographs of columella cells from sweet clover seedlings grown and fixed in microgravity revealed longitudinal and cross sectioned cortical microtubules. This is the first report demonstrating the presence and stability of this network in plants in microgravity.  相似文献   
18.
The QacC polypeptide is a member of a family of small membrane proteins which confer resistance to toxic compounds. The staphylococcal qacC gene confers resistance to toxic organic cations via proton-dependent export. The membrane topology of the QacC polypeptide was investigated by constructing and analyzing a series of qacC-phoA and qacC-lacZ fusions. From these analyses, most of the predicted features of the QacC protein were verified, although data regarding the possible orientation of the COOH region were not conclusive. The role of the sole cysteine residue, Cys-42, in QacC was studied by using the sulfhydryl reagent N-ethylmaleimide and site-directed mutagenesis. N-Ethylmaleimide was shown to inhibit qacC-mediated ethidium export. Multiple amino acid substitutions were made for Cys-42, and mutations at this location had various effects on resistance specificity. This suggests that the Cys-42 residue may be located near a region of QacC that is involved in substrate recognition. Mutagenesis of conserved residues in QacC indicated that Tyr-59 and Trp-62 also play an essential structural or functional role in QacC.  相似文献   
19.
Monosaccharides, disaccharides, and trisaccharides were tested as inhibitors of the in vitro growth of Plasmodium falciparum (strain FCB). While certain monosaccharides (N-acetyl-D-glucosamine, D-mannose, and 3-O-methyl-D-glucose) proved to exhibit a toxic or reversibly retarding effect on the intraerythrocytic development of the parasite, the corresponding alpha- or beta-methylglycosides did not. Several methylglycosides, synthetic di- and tri-saccharides, and artificial blood group antigens were further tested for inhibitory effects on invasion of host red blood cells in vitro. The synthetic disaccharides beta DGlcNAc(1----4) alpha DManOMe and beta DGlcNAc(1----4) DGlcNAc (chitobiose) were good inhibitors of invasion at 10 mM concentration, whereas beta DGal(1----4)beta DGlcNAcOMe was negligibly inhibitory. The inhibition rate of N-acetyl-D-glucosamine, beta-glycosidically linked to bovine serum albumin (BSA) by an alipathic spacer, -(CH2)8CO-, was not enhanced, compared to the corresponding hapten, beta DGlcNAcO(CH2)8COOCH3. The inhibition rates of blood group A- and B-trisaccharide haptens, which were inhibitors of invasion, were also not significantly enhanced when coupled to BSA by way of the corresponding amide spacer, -(CH2)2NHCO(CH2)7CO-. A remarkable enhancement of the inhibition rate was, however, observed when beta DGal(1----3) alpha DGalNAcO(CH2)2NHCO(CH2)7COOCH3 (T-hapten) was coupled to BSA. A clear-cut decrease in the inhibition rates of different beta-glycosides of N-acetyl-D-glucosamine, beta DGlcNAcOR, was observed, depending on the nature of the aglycon R(p-nitrophenyl greater than -(CH2)8COOCH3 greater than -(CH2)2NHCO(CH2)2COOCH3 greater than -CH3). Also, p-nitrophenyl-alpha-D-glucopyranoside was a much better inhibitor of invasion than the corresponding methyl glycoside, alpha DGlcOMe, which was not inhibitory. The properties of the aglycon spacer, used for the covalent attachment of the carbohydrate to the carrier protein, may thus be crucial for the outcome of the inhibition rate.  相似文献   
20.
Ophiobolin A, a sesterterpene metabolite of Helminthosporium maydis, Nisikado and Miyake, stimulates net leakage of electrolytes and glucose from maize (Zea mays L.) seedling roots. Treatment of the roots with ophiobolin A at a concentration of 10 mug/ml (25 mum) inhibits uptake of 10 mm 2-deoxyglucose by 50% and of 0.5 mm 2-deoxyglucose by 85%. Compartmental analysis of the efflux of 3-O-methylglucose failed to show a similar effect of ophiobolin A on the rate of efflux of hexose. The inhibition of uptake is not reversible by washing. There is no difference in the effects on roots from cytoplasmic male sterile or normal cytoplasm plants, and exposure of carrot (Daucus carota L.) root discs to ophiobolin A also causes inhibition of 2-deoxyglucose uptake by this tissue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号