首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3785篇
  免费   228篇
  2024年   4篇
  2023年   39篇
  2022年   62篇
  2021年   114篇
  2020年   106篇
  2019年   128篇
  2018年   134篇
  2017年   120篇
  2016年   200篇
  2015年   253篇
  2014年   276篇
  2013年   323篇
  2012年   318篇
  2011年   301篇
  2010年   203篇
  2009年   168篇
  2008年   205篇
  2007年   179篇
  2006年   164篇
  2005年   146篇
  2004年   132篇
  2003年   95篇
  2002年   110篇
  2001年   28篇
  2000年   25篇
  1999年   29篇
  1998年   17篇
  1997年   9篇
  1996年   9篇
  1995年   10篇
  1994年   6篇
  1993年   7篇
  1992年   6篇
  1991年   8篇
  1990年   8篇
  1989年   5篇
  1988年   7篇
  1986年   5篇
  1985年   2篇
  1983年   7篇
  1982年   5篇
  1981年   4篇
  1980年   5篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1973年   3篇
  1972年   5篇
排序方式: 共有4013条查询结果,搜索用时 31 毫秒
51.
Synopsis We studied the timing of migratory fish spawning in the last dam-free stretch of the upper Paraná River and in Itaipu Reservoir. Eggs were more common in the Amambai and Ivaï Rivers, while larvae predominated in the Paraná River and in Itaipu Reservoir. Both eggs and larvae were more abundant at night. The highest abundance of eggs was in October and that of larvae in November. Migratory species predominated in the Amambai and Paraná Rivers, and non-migratory species in the Ivaï River and Itaipu Reservoir. The predominance of eggs in the upper and middle portions, and larvae in the lower, infer that there are spawning sites in the former and nurseries in the latter. The high nocturnal abundance of eggs is associated with spawning at sunset and that of larvae with feeding, avoidance of predators and nocturnal disorientation. The presence of tributaries such as the Amambai and Ivaí Rivers in the last dam-free stretch of the Paraná River is extremely important to the maintenance of regional fish diversity and fish stocks in both the Paraná River and Itaipu Reservoir.  相似文献   
52.
Complex networks of species interactions might be determined by species traits but also by simple chance meetings governed by species abundances. Although the idea that species traits structure mutualistic networks is appealing, most studies have found abundance to be a major structuring mechanism underlying interaction frequencies. With a well‐resolved plant–hummingbird interaction network from the Neotropical savanna in Brazil, we asked whether species morphology, phenology, nectar availability and habitat occupancy and/or abundance best predicted the frequency of interactions. For this, we constructed interaction probability matrices and compared them to the observed plant‐hummingbird matrix through a likelihood approach. Furthermore, a recently proposed modularity algorithm for weighted bipartite networks was employed to evaluate whether these factors also scale‐up to the formation of modules in the network. Interaction frequencies were best predicted by species morphology, phenology and habitat occupancy, while species abundances and nectar availability performed poorly. The plant–hummingbird network was modular, and modules were associated to morphological specialization and habitat occupancy. Our findings highlight the importance of traits as determinants of interaction frequencies and network structure, corroborating the results of a previous study on a plant–hummingbird network from the Brazilian Atlantic Forest. Thus, we propose that traits matter more in tropical plant–hummingbird networks than in less specialized systems. To test the generality of this hypothesis, future research could employ geographic or taxonomic cross‐system comparisons contrasting networks with known differences in level of specialization.  相似文献   
53.
54.
55.
Optimized experimental conditions for extracting accurate information at subpixel length scales from analyzer-based X-ray imaging were obtained and applied to investigate bone regeneration by means of synthetic β-TCP grafting materials in a rat calvaria model. The results showed a 30% growth in the particulate size due to bone ongrowth/ingrowth within the critical size defect over a 1-month healing period.  相似文献   
56.
57.
Most data on species associations and vector potential of mosquitoes in relation to arboviral infections in South Africa date back from the 1940s to late 1990s. Contextual information crucial for disease risk management and control, such as the sampling effort, diversity, abundance, and distribution of mosquitoes in large parts of South Africa still remains limited. Adult mosquitoes were collected routinely from two horse farms in Gauteng Province; two wildlife reserves in Limpopo Province, at Orpen Gate in Kruger National Park (KNP) and Mnisi Area in Mpumalanga Province between 2014–2017, using carbon dioxide‐baited light and tent traps. Mosquito diversity and richness are greater in untransformed natural and mixed rural settings. In untransformed wilderness areas, the most dominant species were Culex poicilipes, Anopheles coustani, and Aedes mcintoshi, while in mixed rural settings such as the Mnisi area, the two most abundant species were Cx. poicilipes and Mansonia uniformis. However, in peri‐urban areas, Cx. theileri, Cx. univittatus, and Cx. pipiens sensu lato were the most dominant. Aedes aegypti, Ae. mcintoshi, Ae. metallicus, Ae. vittatus, Cx. pipiens s.l., Cx. theileri, and Cx. univittatus had the widest geographical distribution in northern South Africa. Also collected were Anopheles arabiensis and An. vaneedeni, both known malaria vectors in South Africa. Arbovirus surveillance and vector control programs should be augmented in mixed rural and peri‐urban areas where the risk for mosquito‐borne disease transmission to humans and domestic stock is greater.  相似文献   
58.
The fate of tropical forests under future climate change is dependent on the capacity of their trees to adjust to drier conditions. The capacity of trees to withstand drought is likely to be determined by traits associated with their hydraulic systems. However, data on whether tropical trees can adjust hydraulic traits when experiencing drought remain rare. We measured plant hydraulic traits (e.g. hydraulic conductivity and embolism resistance) and plant hydraulic system status (e.g. leaf water potential, native embolism and safety margin) on >150 trees from 12 genera (36 species) and spanning a stem size range from 14 to 68 cm diameter at breast height at the world's only long‐running tropical forest drought experiment. Hydraulic traits showed no adjustment following 15 years of experimentally imposed moisture deficit. This failure to adjust resulted in these drought‐stressed trees experiencing significantly lower leaf water potentials, and higher, but variable, levels of native embolism in the branches. This result suggests that hydraulic damage caused by elevated levels of embolism is likely to be one of the key drivers of drought‐induced mortality following long‐term soil moisture deficit. We demonstrate that some hydraulic traits changed with tree size, however, the direction and magnitude of the change was controlled by taxonomic identity. Our results suggest that Amazonian trees, both small and large, have limited capacity to acclimate their hydraulic systems to future droughts, potentially making them more at risk of drought‐induced mortality.  相似文献   
59.
Understory fires represent an accelerating threat to Amazonian tropical forests and can, during drought, affect larger areas than deforestation itself. These fires kill trees at rates varying from < 10 to c. 90% depending on fire intensity, forest disturbance history and tree functional traits. Here, we examine variation in bark thickness across the Amazon. Bark can protect trees from fires, but it is often assumed to be consistently thin across tropical forests. Here, we show that investment in bark varies, with thicker bark in dry forests and thinner in wetter forests. We also show that thinner bark translated into higher fire‐driven tree mortality in wetter forests, with between 0.67 and 5.86 gigatonnes CO2 lost in Amazon understory fires between 2001 and 2010. Trait‐enabled global vegetation models that explicitly include variation in bark thickness are likely to improve the predictions of fire effects on carbon cycling in tropical forests.  相似文献   
60.
Candeia (Eremanthus erythropappus (DC.) MacLeish), a native forest species from South America, has garnered commercial interest due to its production of essential oil that contains alpha-bisabolol. This compound is widely used in the pharmaceutical and cosmetics industry, with approximately 80% of Brazilian production being exported. Since candeia rust (Puccinia velata) has only been reported in Brazil, little is known about its epidemiology and control. There is no methodology to quantify rust severity in candeia, justifying the elaboration and validation of a diagrammatic scale containing eight levels of disease severity based on leaf area coverage (0.25%, 0.5%, 1%, 2%, 4%, 8%, 16% and 32%). In a natural sampling of disease in the field, 95% of the leaves showed severity below 16%, with the remaining 5% showing severities between 16% and 32% of leaf area. Validation of the proposed diagrammatic scale was performed by assessing the results from 10 inexperienced evaluators, performing evaluations of three leaves with different severity levels. The evaluations were performed at 7-day intervals; in the first instance, severity values were assigned without the diagrammatic scale, and for the second attempt, the scale proposed in this study was used. The accuracy and precision of the severity estimates produced by each evaluator compared to the real severity was analysed by linear regression and by Lin's statistics. The reproducibility of the estimates was evaluated by analysing the coefficient of determination of linear regressions by pairs of evaluators. The scale provided adequate levels of accuracy, precision, repeatability and reproducibility, indicating the proposed scale was a suitable method for quantifying the severity of candeia rust.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号