首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1908篇
  免费   153篇
  国内免费   1篇
  2023年   12篇
  2022年   30篇
  2021年   57篇
  2020年   30篇
  2019年   36篇
  2018年   46篇
  2017年   27篇
  2016年   57篇
  2015年   93篇
  2014年   109篇
  2013年   145篇
  2012年   131篇
  2011年   158篇
  2010年   65篇
  2009年   67篇
  2008年   89篇
  2007年   88篇
  2006年   68篇
  2005年   76篇
  2004年   70篇
  2003年   76篇
  2002年   72篇
  2001年   21篇
  2000年   20篇
  1999年   36篇
  1998年   16篇
  1997年   11篇
  1996年   18篇
  1995年   17篇
  1994年   13篇
  1993年   16篇
  1992年   17篇
  1991年   17篇
  1990年   17篇
  1989年   20篇
  1988年   11篇
  1987年   8篇
  1986年   7篇
  1985年   13篇
  1984年   14篇
  1983年   11篇
  1982年   8篇
  1981年   8篇
  1978年   12篇
  1976年   8篇
  1975年   12篇
  1974年   13篇
  1972年   6篇
  1971年   7篇
  1970年   11篇
排序方式: 共有2062条查询结果,搜索用时 15 毫秒
121.
122.
In vitro chromosome doubling of embryogenic callus lines of the Citrus cultivars Umatilla and Dweet tangors (Citrus reticulata Blanco×C. sinensis [L.] Osb.), Caffin clementine (C. clementina Hort. ex Tan.) and Wheeny grapefruit (C. paradisi Macf) was carried out in the presence of either 0.05 or 0.1% colchicine, or 0.01, 0.05 or 0.1% oryzalin. Embryogenic callus development was partly suppressed in the presence of colchicine, and completely suppressed by oryzalin at all concentrations tested. No plants were regenerated from any of the oryzalin treatments. Ploidy level of plants regenerated from the colchicine treatments was determined using flow cytometry and chromosome squashes. Three desirable non-chimeric, autotetraploid plants of the mono-embryonic cultivar Umatilla were produced using 0.05% colchicine and one from 0.1% colchicine. One mixoploid Dweet plant was produced using 0.1% colchicine.  相似文献   
123.
There is a continuing need for monitoring the health of the environment due to the presence of pollutants. Here, we review the development and attributes of biosensors by which bacteria have been genetically modified to express the luminescence genes, i.e. to glow, in a quantified manner, in response to pollutants. We have concentrated on the detection of organic hydrocarbon pollutants and discussed the molecular mechanisms by which some of these chemicals act as effector molecules on the respective regulatory systems. The future of environmental biosensors is predictably bright. As more knowledge is gathered on the sensing regulatory component, the possibility of developing targeted or pollutant-specific biosensors is promising. Moreover, the repertoire of biosensors for culprit organic pollutants is expected to be enlarged through advances in genomics technology and identification of new sensory or receptor molecules. The need for pollutant detection at concentrations in the parts per trillion range or biosensors configured in a nanoscale is anticipated.  相似文献   
124.
125.
Six triterpenoid saponins were isolated from the stem bark of Pometia ridleyi along with two known saponins, acutoside A and calenduloside C. Their structures were established using one- and two-dimensional NMR and mass spectrometry as 3-O-beta-D-apiofuranosyl-(1-->3)-[beta-D-glucopyranosyl-(1-->2)]-beta-D-glucopyranosyl-, 3-O-beta-D-apiofuranosyl-(1-->3)-alpha-L-arabinopyranosyl-(1-->3)-[beta-D-glucopyranosyl-(1-->2)]-beta-D-glucopyranosyl-, 3-O-beta-D-apiofuranosyl-(1-->3)-beta-D-galactopyranosyl-(1-->3)-[beta-D-glucopyranosyl-(1-->2)]-beta-D-glucopyranosyl-, 3-O-alpha-L-arabinopyranosyl-(1-->3)-[beta-D-glucopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl-, 3-O-beta-D-galactopyranosyl-(1-->3)-[beta-D-glucopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl-, 3-O-beta-D-apiofuranosyl-(1-->3)-beta-D-galactopyranosyl-(1-->3)-[beta-D-glucopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl-oleanolic acid. The EtOH and EtOAc extracts of the stem bark showed no cytotoxic activity. At a concentration of 23 microg/ml, the saponin mixture showed haemolytic activity and caused 50% haemolysis of a 10% suspension of sheep erythrocytes.  相似文献   
126.
Tolerance to digestive stresses is one of the main factors limiting the use of microorganisms as live probiotic agents. Susceptibility to bile salts and tolerance acquisition in the probiotic strain Propionibacterium freudenreichii SI41 were characterized. We showed that pretreatment with a moderate concentration of bile salts (0.2 g/liter) greatly increased its survival during a subsequent lethal challenge (1.0 g/liter, 60 s). Bile salts challenge led to drastic morphological changes, consistent with intracellular material leakage, for nonadapted cells but not for preexposed ones. Moreover, the physiological state of the cells during lethal treatment played an important role in the response to bile salts, as stationary-phase bacteria appeared much less sensitive than exponentially growing cells. Either thermal or detergent pretreatment conferred significantly increased protection toward bile salts challenge. In contrast, some other heterologous pretreatments (hypothermic and hyperosmotic) had no effect on tolerance to bile salts, while acid pretreatment even might have sensitized the cells. Two-dimensional electrophoresis experiments revealed that at least 24 proteins were induced during bile salts adaptation. Identification of these polypeptides suggested that the bile salts stress response involves signal sensing and transduction, a general stress response (also triggered by thermal denaturation, oxidative toxicity, and DNA damage), and an alternative sigma factor. Taken together, our results provide new insights into the tolerance of P. freudenreichii to bile salts, which must be taken into consideration for the use of probiotic strains and the improvement of technological processes.  相似文献   
127.
We have previously described the occurrence in Paramecium of a casein kinase (CK) activity (EC 2.7.1.37) with some unusual properties, including inhibition by Ca(2+) (R. Kissmehl, T. Treptau, K. Hauser, and H. Plattner, FEBS Lett. 402:227-235, 1995). We now have cloned four genes, PtCK2alpha1 to PtCK2alpha4, all of which encode the catalytic alpha subunit of type 2 CK (CK2) with calculated molecular masses ranging from 38.9 to 39.4 kDa and pI values ranging from 8.8 to 9.0. They can be classified into two groups, which differ from each other by 28% on the nucleotide level and by 18% on the derived amino acid level. One of them, PtCK2alpha3, has been expressed in Escherichia coli and characterized in vitro. As we also have observed with the isolated CK, the recombinant protein preferentially phosphorylates casein but also phosphorylates some Paramecium-specific substrates, including the exocytosis-sensitive phosphoprotein pp63/parafusin. Characteristically, Ca(2+) inhibits the phosphorylation at elevated concentrations occurring during stimulation of a cell. Reconstitution with a recombinant form of the regulatory subunit from Xenopus laevis, XlCK2beta, confirms Ca(2+) sensitivity also under conditions of autophosphorylation. This is unusual for CK2 but correlates with the presence of two EF-hand calcium-binding motifs, one of which is located in the N-terminal segment essential for constitutive activity, as well as with an aberrant composition of normally basic domains recognizing acidic substrate domains. Immunogold localization reveals a considerable enrichment in the outermost cell cortex layers, excluding cilia. We discuss a potential role of this Ca(2+)-inhibited PtCK2alpha species in a late step of signal transduction.  相似文献   
128.
Insect and vertebrate eyes differ in their formation, cellular composition, neural connectivity, and visual function. Despite this diversity, Drosophila atona and its vertebrate Ortholog in the eye, Ath5, each regulate determination of the first retinal neuron class-R8 photo-receptors and retinal ganglion cells (RGCs)-in their respective organisms. We have performed a cross-species functional comparison of these genes. In ato mutant Drosophila, ectopic Xenopus Ath5 (Xath5) rescues photoreceptor cell development comparably with atonaI. In contrast, mouse Ath5 (Math5) induces formation of very few ommatidia, and most of these lack R8 cells. In the developing frog eye, ectopic atonal, like Xath5, promotes the differentiation RGCs. Despite strong conservation of atonaI, Xath5, and Math5 structure and shared function, other factors must contribute to the species specificity of retinal neuron determination. These observations suggest that the atonaI family may occupy a position in a gene hierarchy where differences in gene regulation or function can be correlated with evolutionary diversity of eye development.  相似文献   
129.
The DNA-dependent protein kinase (DNA-PK) plays an essential role in nonhomologous DNA end joining (NHEJ) by initially recognizing and binding to DNA breaks. We have shown that in vitro, purified DNA-PK undergoes autophosphorylation, resulting in loss of activity and disassembly of the kinase complex. Thus, we have suggested that autophosphorylation of the DNA-PK catalytic subunit (DNA-PKcs) may be critical for subsequent steps in DNA repair. Recently, we defined seven autophosphorylation sites within DNA-PKcs. Six of these are tightly clustered within 38 residues of the 4,127-residue protein. Here, we show that while phosphorylation at any single site within the major cluster is not critical for DNA-PK's function in vivo, mutation of several sites abolishes the ability of DNA-PK to function in NHEJ. This is not due to general defects in DNA-PK activity, as studies of the mutant protein indicate that its kinase activity and ability to form a complex with DNA-bound Ku remain largely unchanged. However, analysis of rare coding joints and ends demonstrates that nucleolytic end processing is dramatically reduced in joints mediated by the mutant DNA-PKcs. We therefore suggest that autophosphorylation within the major cluster mediates a conformational change in the DNA-PK complex that is critical for DNA end processing. However, autophosphorylation at these sites may not be sufficient for kinase disassembly.  相似文献   
130.
The fundamental importance of correct protein glycosylation is abundantly clear in a group of diseases known as congenital disorders of glycosylation (CDGs). In these diseases, many biological functions are compromised, giving rise to a wide range of severe clinical conditions. By performing detailed analyses of the total serum glycoproteins as well as isolated transferrin and IgG, we have directly correlated aberrant glycosylation with a faulty glycosylation processing step. In one patient the complete absence of complex type sugars was consistent with ablation of GlcNAcTase II activity. In another CDG type II patient, the identification of specific hybrid sugars suggested that the defective processing step was cell type-specific and involved the mannosidase III pathway. In each case, complementary serum proteome analyses revealed significant changes in some 31 glycoproteins, including components of the complement system. This biochemical approach to charting diseases that involve alterations in glycan processing provides a rapid indicator of the nature, severity, and cell type specificity of the suboptimal glycan processing steps; allows links to genetic mutations; indicates the expression levels of proteins; and gives insight into the pathways affected in the disease process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号