首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1567篇
  免费   134篇
  2023年   10篇
  2022年   22篇
  2021年   53篇
  2020年   26篇
  2019年   30篇
  2018年   41篇
  2017年   26篇
  2016年   52篇
  2015年   83篇
  2014年   101篇
  2013年   132篇
  2012年   111篇
  2011年   139篇
  2010年   54篇
  2009年   51篇
  2008年   83篇
  2007年   80篇
  2006年   58篇
  2005年   59篇
  2004年   60篇
  2003年   65篇
  2002年   62篇
  2001年   6篇
  2000年   7篇
  1999年   22篇
  1998年   10篇
  1997年   6篇
  1996年   12篇
  1995年   10篇
  1994年   9篇
  1993年   10篇
  1992年   10篇
  1991年   10篇
  1990年   9篇
  1989年   13篇
  1988年   11篇
  1987年   7篇
  1986年   7篇
  1985年   8篇
  1984年   11篇
  1983年   6篇
  1982年   7篇
  1981年   7篇
  1978年   9篇
  1976年   5篇
  1975年   7篇
  1974年   7篇
  1972年   6篇
  1971年   5篇
  1970年   11篇
排序方式: 共有1701条查询结果,搜索用时 265 毫秒
51.
52.
53.
Sandhoff disease (SD) is an autosomal recessive lysosomal storage disease caused by mutations in the HEXB gene encoding the beta subunit of hexosaminidases A and B, two enzymes involved in GM2 ganglioside degradation. Eleven French Sandhoff patients with infantile or juvenile forms of the disease were completely characterized using sequencing of the HEXB gene. A specific procedure was developed to facilitate the detection of the common 5′-end 16 kb deletion which was frequent (36% of the alleles) in our study. Eleven other disease-causing mutations were found, among which four have previously been reported (c.850C>T, c.793T>G, c.115del and c.800_817del). Seven mutations were completely novel and were analyzed using molecular modelling. Two deletions (c.176del and c.1058_1060del), a duplication (c.1485_1487dup) and a nonsense mutation (c.552T>G) were predicted to strongly alter the enzyme spatial organization. The splice mutation c.558+5G>A affecting the intron 4 consensus splice site led to a skipping of exon 4 and to a truncated protein (p.191X). Two missense mutations were found among the patients studied. The c.448A>C mutation was probably a severe mutation as it was present in association with the known c.793T>G in an infantile form of Sandhoff disease and as it significantly modified the N-terminal domain structure of the protein. The c.171G>C mutation resulting in a p.W57C amino acid substitution in the N-terminal region is probably less drastic than the other abnormalities as it was present in a juvenile patient in association with the c.176del. Finally, this study reports a rapid detection of the Sandhoff disease-causing alleles facilitating genetic counselling and prenatal diagnosis in at-risk families.  相似文献   
54.
Abstract

The importance of the base composition and of the conformation of nucleic acids in the reaction with the drug cis-diamminedichloroplatinum(II) has been studied by competition experiments between the drug and several double-stranded polydeoxyribonucleotides. Binding to poly(dG)·poly(dC) is larger than to poly (dG-dC)·poly(dG-dC). There is no preferential binding in the competition between poly(dG-dC) ·poly(dG-dC), poly(dA-dC) ·poly(dG-dT) and poly(dA-dG)·poly(dC-dT). In the competition between poly(dG-dC) ·poly (dG-dC) (B conformation) and poly(dG-br5dC) ·poly(dG-br5dC) (Z conformation), the drug binds equally well to both polynucleotides. In natural DNA, modification of guanine residues in (GC)n·(GC)nsequences by the drug has been revealed by the inhibition of cleavage of these sequences by the restriction enzyme BssHII. By means of antibodies to platinated poly(dG-dC), it is shown that some of the adducts formed in platinated poly(dG-dC) are also formed in platinated pBR322 DNA. The type of adducts recognized by the antibodies is not known. Thin layer chromatography of the products after chemical and enzymatic hydrolysis of platinated poly(dG-dC) suggests that interstrand cross-links are formed. Finally, the conformations of poly(dG-m5dC) modified either by cis-diamminedichloroplatinum(II) or by trans-diammine- dichloroplatinum(II) have been compared by circular dichroism. Both the cis-isomer and the trans-isomer stabilize the Z conformation when they bind to poly(dG-m5dC) in the Z conformation. When they bind to poly(dG-m5dC) in the B conformation, the conformations of poly(dG-m5dC) modified by the cis or the trans-isomer are different. Moreover, the cis-isomer facilitates the B form-Z form transition of the unplatinated regions while the trans-isomer makes it more difficult.  相似文献   
55.
The intracellular bacterial agent of Q fever, Coxiella burnetii, translocates effector proteins into its host cell cytosol via a Dot/Icm type IV secretion system (T4SS). The T4SS is essential for parasitophorous vacuole formation, intracellular replication, and inhibition of host cell death, but the effectors mediating these events remain largely undefined. Six Dot/Icm substrate-encoding genes were recently discovered on the C. burnetii cryptic QpH1 plasmid, three of which are conserved among all C. burnetii isolates, suggesting that they are critical for conserved pathogen functions. However, the remaining hypothetical proteins encoded by plasmid genes have not been assessed for their potential as T4SS substrates. In the current study, we further defined the T4SS effector repertoire encoded by the C. burnetii QpH1, QpRS, and QpDG plasmids that were originally isolated from acute-disease, chronic-disease, and severely attenuated isolates, respectively. Hypothetical proteins, including those specific to QpRS or QpDG, were screened for translocation using the well-established Legionella pneumophila T4SS secretion model. In total, six novel plasmid-encoded proteins were translocated into macrophage-like cells by the Dot/Icm T4SS. Four newly identified effectors are encoded by genes present only on the QpDG plasmid from severely attenuated Dugway isolates, suggesting that the presence of specific effectors correlates with decreased virulence. These results further support the idea of a critical role for extrachromosomal elements in C. burnetii pathogenesis.  相似文献   
56.
This study sought to investigate the hourly and daily timescale responses of soil CO2 fluxes to temperature in a limed agricultural soil. Observations from different incubation experiments were compared with the results of a model combining biotic (heterotrophic respiration) and abiotic (carbonate weathering) components. Several samples were pre-incubated for 8–9 days at three temperatures (5, 15 and 25 °C) and then submitted to short-term temperature (STT) cycles (where the temperature was increased from 5 to 35 °C in 10 °C stages, with each stage being 3 h long). During the temperature cycles (hourly timescale), the soil CO2 fluxes increased significantly with temperature under all pre-incubation temperature (PIT) treatments. A hysteresis effect and negative fluxes during cooling phases were also systematically observed. At a given hourly timescale temperature, there was a negative relationship of the CO2 fluxes with the PIT. Using the combined model allowed the experimental results to be clearly described, including the negative fluxes and the hysteresis effect, showing the potentially large contribution of abiotic fluxes to total fluxes in limed soils, after STT changes. The fairly good agreement between the measured and simulated flux results also suggested that the biotic flux temperature sensitivity was probably unaffected by timescale (hourly or daily) or PIT. The negative relationship of the CO2 fluxes with the PIT probably derived from very labile soil carbon depletion, as shown in the simulations. This was not, however, confirmed by soil carbon measurements, which leaves open the possibility of adaptation within the microbial community.  相似文献   
57.
The DNA mismatch repair (MMR) system participates in cis‐diamminedichloroplatinum (II) (cisplatin) cytotoxicity through signaling of cisplatin DNA lesions by yet unknown molecular mechanisms. It is thus of great interest to determine whether specialized function of MMR proteins could be associated with cisplatin DNA damage. The major cisplatin 1,2‐d(GpG) intrastrand crosslink and compound lesions arising from misincorporation of a mispaired base opposite either platinated guanine of the 1,2‐d(GpG) adduct are thought to be critical lesions for MMR signaling. Previously, we have shown that cisplatin compound lesion with a mispaired thymine opposite the 3′ platinated guanine triggers new Escherichia coli MutS ATP‐dependent biochemical activities distinguishable from those encountered with DNA mismatch consistent with a role of this lesion in MMR‐dependent signaling mechanism. In this report, we show that the major cisplatin 1,2‐d(GpG) intrastrand crosslink does not confer novel MutS postrecognition biochemical activity as studied by surface plasmon resonance spectroscopy. A fast rate of MutS ATP‐dependent dissociation prevents MutL recruitment to the major cisplatin lesion in contrast to cisplatin compound lesion which authorized MutS‐dependent recruitment of MutL with a dynamic of ternary complex formation distinguishable from that encountered with DNA mismatch substrate. We conclude that the mode of cisplatin DNA damage recognition by MutS and the nature of MMR post‐recognition events are lesion‐dependent and suggest that MMR signaling through the major cisplatin lesion is unlikely to occur. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 636–647, 2013.  相似文献   
58.
59.
Oligosaccharides attached to Asn297 in each of the CH2 domains of monoclonal antibodies play an important role in antibody effector functions by modulating the affinity of interaction with Fc receptors displayed on cells of the innate immune system. Rapid, detailed, and quantitative N-glycan analysis is required at all stages of bioprocess development to ensure the safety and efficacy of the therapeutic. The high sample numbers generated during quality by design (QbD) and process analytical technology (PAT) create a demand for high-performance, high-throughput analytical technologies for comprehensive oligosaccharide analysis. We have developed an automated 96-well plate-based sample preparation platform for high-throughput N-glycan analysis using a liquid handling robotic system. Complete process automation includes monoclonal antibody (mAb) purification directly from bioreactor media, glycan release, fluorescent labeling, purification, and subsequent ultra-performance liquid chromatography (UPLC) analysis. The entire sample preparation and commencement of analysis is achieved within a 5-h timeframe. The automated sample preparation platform can easily be interfaced with other downstream analytical technologies, including mass spectrometry (MS) and capillary electrophoresis (CE), for rapid characterization of oligosaccharides present on therapeutic antibodies.  相似文献   
60.
Facioscapulohumeral muscular dystrophy type 1 (FSHD1) is caused by contraction of the D4Z4 repeat array on chromosome 4 to a size of 1–10 units. The residual number of D4Z4 units inversely correlates with clinical severity, but significant clinical variability exists. Each unit contains a copy of the DUX4 retrogene. Repeat contractions are associated with changes in D4Z4 chromatin structure that increase the likelihood of DUX4 expression in skeletal muscle, but only when the repeat resides in a genetic background that contains a DUX4 polyadenylation signal. Mutations in the structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1) gene, encoding a chromatin modifier of D4Z4, also result in the increased likelihood of DUX4 expression in individuals with a rare form of FSHD (FSHD2). Because SMCHD1 directly binds to D4Z4 and suppresses somatic expression of DUX4, we hypothesized that SMCHD1 may act as a genetic modifier in FSHD1. We describe three unrelated individuals with FSHD1 presenting an unusual high clinical severity based on their upper-sized FSHD1 repeat array of nine units. Each of these individuals also carries a mutation in the SMCHD1 gene. Familial carriers of the FSHD1 allele without the SMCHD1 mutation were only mildly affected, suggesting a modifier effect of the SMCHD1 mutation. Knocking down SMCHD1 in FSHD1 myotubes increased DUX4 expression, lending molecular support to a modifier role for SMCHD1 in FSHD1. We conclude that FSHD1 and FSHD2 share a common pathophysiological pathway in which the FSHD2 gene can act as modifier for disease severity in families affected by FSHD1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号