首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1561篇
  免费   133篇
  1694篇
  2023年   10篇
  2022年   23篇
  2021年   53篇
  2020年   26篇
  2019年   30篇
  2018年   41篇
  2017年   26篇
  2016年   53篇
  2015年   84篇
  2014年   103篇
  2013年   131篇
  2012年   111篇
  2011年   139篇
  2010年   53篇
  2009年   52篇
  2008年   81篇
  2007年   80篇
  2006年   58篇
  2005年   59篇
  2004年   61篇
  2003年   64篇
  2002年   63篇
  2001年   7篇
  2000年   7篇
  1999年   21篇
  1998年   11篇
  1997年   5篇
  1996年   12篇
  1995年   10篇
  1994年   8篇
  1993年   10篇
  1992年   9篇
  1991年   10篇
  1990年   8篇
  1989年   13篇
  1988年   10篇
  1987年   6篇
  1986年   7篇
  1985年   6篇
  1984年   8篇
  1983年   6篇
  1982年   7篇
  1981年   7篇
  1978年   9篇
  1976年   5篇
  1975年   7篇
  1974年   7篇
  1972年   6篇
  1971年   5篇
  1970年   11篇
排序方式: 共有1694条查询结果,搜索用时 10 毫秒
101.
Oligosaccharides attached to Asn297 in each of the CH2 domains of monoclonal antibodies play an important role in antibody effector functions by modulating the affinity of interaction with Fc receptors displayed on cells of the innate immune system. Rapid, detailed, and quantitative N-glycan analysis is required at all stages of bioprocess development to ensure the safety and efficacy of the therapeutic. The high sample numbers generated during quality by design (QbD) and process analytical technology (PAT) create a demand for high-performance, high-throughput analytical technologies for comprehensive oligosaccharide analysis. We have developed an automated 96-well plate-based sample preparation platform for high-throughput N-glycan analysis using a liquid handling robotic system. Complete process automation includes monoclonal antibody (mAb) purification directly from bioreactor media, glycan release, fluorescent labeling, purification, and subsequent ultra-performance liquid chromatography (UPLC) analysis. The entire sample preparation and commencement of analysis is achieved within a 5-h timeframe. The automated sample preparation platform can easily be interfaced with other downstream analytical technologies, including mass spectrometry (MS) and capillary electrophoresis (CE), for rapid characterization of oligosaccharides present on therapeutic antibodies.  相似文献   
102.
Terminal meristems of Pisum sativum (garden pea) transit from vegetative to inflorescence development, and begin producing floral axillary meristems. Determination for inflorescence development was assessed by culturing excised buds and meristems. The first node of floral initiation (NFI) for bud expiants developing in culture and for adventitious shoots forming on cultured meristems was compared with the NFI of intact control buds. When terminal buds having eight leaf primordia were excised from plants of different ages (i.e., number of unfolded leaves) and cultured on 6-benzylaminopurine and kinetin-supplemented medium, the NFI was a function of the age of the source plant. By age 3, all terminal buds were determined for inflorescence development. Determination occurred at least eight nodes before the first axillary flower was initiated. Thus, the axillary meristems contributing to the inflorescence had not formed at the time the bud was explanted. Similar results were obtained for cultured axillary buds. In addition, meristems excised without leaf primordia from axillary buds three nodes above the cotyledons of age-3 plants gave rise to adventitious buds with an NFI of 8.3 ±0.3 nodes. In contrast seed-derived plants had an NFI of 16.5 ±0.2. Thus cells within the meristem were determined for inflorescence development. These findings indicate that determination for inflorescence development in P. sativum is a stable developmental state, separable from determination for flower development, and occurring prior to initiation of the inflorescence at the level of meristems.  相似文献   
103.
The development of methods to separate, analyse and monitor changes in glycoform populations is essential if a more detailed understanding of the structure, function and processing of glycoproteins is to emerge. In this study, intact ribonuclease B was resolved by borate capillary electrophoresis into five populations according to the particular oligomnnose structure associated with each glycoform. The relative proportions of these populations are correlated with the percentages obtained indirectly by analysis of the hydrazine released oligosaccharides using Bio-Gel P-4 gel filtration, matrix assisted laser desorption mass spectrometry and high performance anion exchange chromatography. Alterations in the composition of the glycoform populations during digestion of ribonuclease B withA. saitoi (1–2)mannosidase were monitored by capillary electrophoresis (CE). Digestion of the free oligosaccharides under the same conditions, monitored by anion exchange chromatography, revealed a difference in rate, allowing some insight into the role of the protein during oligosaccharide processing. In conjunction with other methods, this novel application of CE may prove a useful addition to the techniques available for the study of glycoform populations.  相似文献   
104.

Background  

Trypanosomes are coated with a variant surface glycoprotein (VSG) that is so densely packed that it physically protects underlying proteins from effectors of the host immune system. Periodically cells expressing a distinct VSG arise in a population and thereby evade immunity. The main structural feature of VSGs are two long α-helices that form a coiled coil, and sets of relatively unstructured loops that are distal to the plasma membrane and contain most or all of the protective epitopes. The primary structure of different VSGs is highly variable, typically displaying only ~20% identity with each other. The genome has nearly 2000 VSG genes, which are located in subtelomeres. Only one VSG gene is expressed at a time, and switching between VSGs primarily involves gene conversion events. The archive of silent VSGs undergoes diversifying evolution rapidly, also involving gene conversion. The VSG family is a paradigm for α helical coiled coil structures, epitope variation and GPI-anchor signals. At the DNA level, the genes are a paradigm for diversifying evolutionary processes and for the role of subtelomeres and recombination mechanisms in generation of diversity in multigene families. To enable ready availability of VSG sequences for addressing these general questions, and trypanosome-specific questions, we have created VSGdb, a database of all known sequences.  相似文献   
105.
106.
This study evaluated the extent of differentiation and cartilage biosynthetic capacity of human adult adipose‐derived stem cells relative to human fetal chondrocytes. Both types of cell were seeded into nonwoven‐mesh polyglycolic acid (PGA) scaffolds and cultured under dynamic conditions with and without addition of TGF‐β1 and insulin. Gene expression for aggrecan and collagen type II was upregulated in the stem cells in the presence of growth factors, and key components of articular cartilage such as glycosaminoglycan (GAG) and collagen type II were synthesized in cultured tissue constructs. However, on a per cell basis and in the presence of growth factors, accumulation of GAG and collagen type II were, respectively, 3.4‐ and 6.1‐fold lower in the stem cell cultures than in the chondrocyte cultures. Although the stem cells synthesized significantly higher levels of total collagen than the chondrocytes, only about 2.4% of this collagen was collagen type II. Relative to cultures without added growth factors, treatment of the stem cells with TGF‐β1 and insulin resulted in a 59% increase in GAG synthesis, but there was no significant change in collagen production even though collagen type II gene expression was upregulated 530‐fold. In contrast, in the chondrocyte cultures, synthesis of collagen type II and levels of collagen type II as a percentage of total collagen more than doubled after growth factors were applied. Although considerable progress has been achieved to develop differentiation strategies and scaffold‐based culture techniques for adult mesenchymal stem cells, the extent of differentiation of human adipose‐derived stem cells in this study and their capacity for cartilage synthesis fell considerably short of those of fetal chondrocytes. Biotechnol. Bioeng. 2010;107: 393–401. © 2010 Wiley Periodicals, Inc.  相似文献   
107.
In vitro chromosome doubling of embryogenic callus lines of the Citrus cultivars Umatilla and Dweet tangors (Citrus reticulata Blanco×C. sinensis [L.] Osb.), Caffin clementine (C. clementina Hort. ex Tan.) and Wheeny grapefruit (C. paradisi Macf) was carried out in the presence of either 0.05 or 0.1% colchicine, or 0.01, 0.05 or 0.1% oryzalin. Embryogenic callus development was partly suppressed in the presence of colchicine, and completely suppressed by oryzalin at all concentrations tested. No plants were regenerated from any of the oryzalin treatments. Ploidy level of plants regenerated from the colchicine treatments was determined using flow cytometry and chromosome squashes. Three desirable non-chimeric, autotetraploid plants of the mono-embryonic cultivar Umatilla were produced using 0.05% colchicine and one from 0.1% colchicine. One mixoploid Dweet plant was produced using 0.1% colchicine.  相似文献   
108.
International Journal of Peptide Research and Therapeutics - The success of endodontic treatments depends on the elimination of intracanal pathogens. Since irrigation and instrumentation can only...  相似文献   
109.
Nitric oxide (NO) is a gaseous signaling molecule which plays both regulatory and defense roles in animals and plants. In the symbiosis between legumes and rhizobia, NO has been shown to be involved in bacterial infection and nodule development steps as well as in mature nodule functioning. We recently showed that an increase in NO level inside Medicago truncatula root nodules also could trigger premature nodule senescence. Here we discuss the importance of the bacterial Sinorhizobium meliloti flavohemoglobin to finely tune the NO level inside nodules and further, we demonstrate that S. meliloti possesses at least two non redundant ways to control NO and that both systems are necessary to maintain efficient nitrogen fixing activity.  相似文献   
110.
This study investigated the role of quercitol in osmotic adjustment in field-grown Eucalyptus astringens Maiden subject to seasonal drought stress over the course of 1 year. The trees grew in a native woodland and a farm plantation in the semi-arid wheatbelt region of south Western Australia. Plantation trees allocated relatively more biomass to leaves than woodland trees, but they suffered greater drought stress over summer, as indicated by lower water potentials, CO2 assimilation rates and stomatal conductances. In contrast, woodland trees had relatively fewer leaves and suffered less drought stress. Plantation trees under drought stress engaged in osmotic adjustment, but woodland trees did not. Quercitol made a significant contribution to osmotic adjustment in drought-stressed trees (25% of total solutes), and substantially more quercitol was measured in the leaves of plantation trees (5% dry matter) than in the leaves of woodland trees (2% dry matter). We found no evidence that quercitol was used as a carbon storage compound while starch reserves were depleted under drought stress. Differences in stomatal conductance, biomass allocation and quercitol production clearly indicate that E. astringens is both morphologically and physiologically 'plastic' in response to growth environment, and that osmotic adjustment is only one part of a complex strategy employed by this species to tolerate drought.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号