首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1009篇
  免费   94篇
  国内免费   2篇
  1105篇
  2024年   2篇
  2023年   9篇
  2022年   21篇
  2021年   45篇
  2020年   26篇
  2019年   32篇
  2018年   32篇
  2017年   37篇
  2016年   51篇
  2015年   62篇
  2014年   84篇
  2013年   88篇
  2012年   90篇
  2011年   71篇
  2010年   52篇
  2009年   35篇
  2008年   29篇
  2007年   52篇
  2006年   37篇
  2005年   33篇
  2004年   28篇
  2003年   32篇
  2002年   23篇
  2001年   9篇
  2000年   9篇
  1999年   15篇
  1998年   9篇
  1996年   5篇
  1995年   3篇
  1994年   5篇
  1992年   6篇
  1991年   6篇
  1990年   4篇
  1989年   2篇
  1988年   7篇
  1987年   5篇
  1986年   4篇
  1984年   6篇
  1982年   5篇
  1981年   4篇
  1980年   2篇
  1977年   2篇
  1976年   2篇
  1974年   6篇
  1973年   3篇
  1970年   2篇
  1969年   1篇
  1968年   1篇
  1967年   3篇
  1966年   1篇
排序方式: 共有1105条查询结果,搜索用时 78 毫秒
131.
132.
133.
Effects of various cAMP analogues on gluconeogenesis in isolated rabbit kidney tubules have been investigated. In contrast to N(6),2'-O-dibutyryladenosine-3',5'-cyclic monophosphate (db-cAMP) and cAMP, which accelerate renal gluconeogenesis, 8-bromoadenosine-3',5'-cyclic monophosphate (Br-cAMP) and 8-(4-chlorophenylthio)-cAMP (pCPT-cAMP) inhibit glucose production. Stimulatory action of cAMP and db-cAMP may be evoked by butyrate and purinergic agonists generated during their extracellular and intracellular metabolism resulting in an increase in flux through fructose-1,6-bisphosphatase and in consequence acceleration of the rate of glucose formation. On the contrary, Br-cAMP is poorly metabolized in renal tubules and induces a fall of flux through glyceraldehyde-3-phosphate dehydrogenase. The contribution of putative extracellular cAMP receptors to the inhibitory Br-cAMP action is doubtful in view of a decline of glucose formation in renal tubules grown in the primary culture supplemented with forskolin. The presented data indicate that in contrast to hepatocytes, in kidney-cortex tubules an increased intracellular cAMP level results in an inhibition of glucose production.  相似文献   
134.
135.
The ATPase inhibitor protein (IP) of mitochondria was detected in the plasma membrane of living endothelial cells by flow cytometry, competition assays, and confocal microscopy of cells exposed to IP antibodies. The plasma membranes of endothelial cells also possess beta-subunits of the mitochondrial ATPase. Plasma membranes have the capacity to bind exogenous IP. TNF-alpha decreases the level of beta-subunits and increases the amount of IP, indicating that the ratio of IP to beta-subunit exhibits significant variations. Therefore, it is probable that the function of IP in the plasma membrane of endothelial cells is not limited to regulation of catalysis.  相似文献   
136.
Aggregation of Abeta peptides is a seminal event in Alzheimer's disease. Detailed understanding of Abeta assembly would facilitate the targeting and design of fibrillogenesis inhibitors. Here comparative conformational and aggregation studies using CD spectroscopy and thioflavine T fluorescence assay are presented. As a model peptide, the 11-28 fragment of Abeta was used. This model peptide is known to contain the core region responsible for Abeta aggregation. The structural and aggregational behaviour of the peptide was compared with the properties of its variants corresponding to natural, clinically relevant mutants at positions 21-23 (A21G, E22K, E22G, E22Q and D23N). In HFIP (hexafluoro-2-propanol), a strong alpha-helix inducer, the CD spectra revealed an unexpectedly high amount of beta-sheet conformation. The aggregation process of Abeta(11-28) variants provoked by water addition to HFIP was found to be consistent with a model of an alpha-helix-containing intermediate. The aggregation propensity of all Abeta(11-28) variants was also compared and discussed.  相似文献   
137.
138.
Colobanthus quitensis (Kunth) Bartl. is widely distributed from Mexico to the Antarctic. C. quitensis is a freezing resistant species that accumulates sucrose in response to cold. We tested the hypothesis that low temperature modifies the kinetic properties of C. quitensis sucrose phosphate synthase (SPS) to increase its activity and ability to synthesize sucrose during cold acclimation. Cold acclimation caused a fourfold increment in sucrose concentration and a 100% increase in SPS activity, without changes in the level of SPS protein. Cold acclimation did not affect the optimal temperature and pH for SPS activity. However, it caused a tenfold increase in the inhibition constant (K i) for inorganic phosphate (Pi) calculated as a function of fructose-6-phosphate (Fruc-6-P). SPS from cold acclimated plants also exhibited a higher reduction of its Michaelis constant (K m) for glucose-6-phosphate (Gluc-6-P) with respect to non-acclimated plants. We suggest that the increase in C. quitensis SPS K i for Pi and the increase in activation by Gluc-6-P in response to cold keep SPS activated, leading to high sucrose accumulation. This may be an important adaptation that allows efficient accumulation of sucrose during the harsh Antarctic summer.  相似文献   
139.
Bcl-2 inhibits apoptosis by regulating the release of cytochrome c and other proteins from mitochondria. Oligomerization of Bax promotes cell death by permeabilizing the outer mitochondrial membrane. In transfected cells and isolated mitochondria, Bcl-2, but not the inactive point mutants Bcl-2-G145A and Bcl-2-V159D, undergoes a conformation change in the mitochondrial membrane in response to apoptotic agonists such as tBid and Bax. A mutant Bcl-2 with two cysteines introduced at positions predicted to result in a disulfide bond that would inhibit the mobility of alpha5-alpha6 helices (Bcl-2-S105C/E152C) was only active in a reducing environment. Thus, Bcl-2 must change the conformation to inhibit tBid-induced oligomerization of integral membrane Bax monomers and small oligomers. The conformationally changed Bcl-2 sequesters the integral membrane form of Bax. If Bax is in excess, apoptosis resumes as Bcl-2 is consumed by the conformational change and in complexes with Bax. Thus, Bcl-2 functions as an inhibitor of mitochondrial permeabilization by changing conformation in the mitochondrial membrane to bind membrane-inserted Bax monomers and prevent productive oligomerization of Bax.  相似文献   
140.
Ciprofloxacin induced an increment of reactive oxygen species in sensitive strains of Staphylococcus aureus leading to oxidative stress detected by chemiluminescence while resistant strains did not suffer such stress. Oxidation of lipids was performed by employing thiobarbituric acid reaction to detect the formation of the amplified intermediate between reactive species oxygen and cytoplasmic macromolecules, namely malondialdehyde (MDA). The sensitive strain presented higher peroxidation of lipids than the resistant strain. The oxidative consequence for DNA was investigated by means of bacteria incubation with ciprofloxacin and posterior extraction of DNA, which was studied by high performance liquid chromatography (HPLC). Sensitive S. aureus ATCC 29213 showed an increase of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) respect controls without antibiotic; there was evident increase of the ratio between 8-oxodG and deoxyguanosine (dG) as a consequence of oxidation of dG to 8-oxodG considered the major DNA marker of oxidative stress. The resistant strain showed low oxidation of DNA and the analysis of 8-oxodG/dG ratio indicated lesser formation of 8-oxodG than S. aureus ATCC 29213.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号