The impact of contaminated bottom sediments on plant growth and soil enzyme activities was evaluated in a greenhouse pot study. The sediments were moderately contaminated with zinc and heavily contaminated with polycyclic aromatic hydrocarbons and polychlorinated dibenzo-p-dioxins and furans. The sediments were mixed with soil and planted with either Festuca arundinacea or Tagetes patula. The capacity of two rhizobacterial strains (Massilia niastensis P87 and Streptomyces costaricanus RP92), previously isolated from contaminated soils, to improve plant growth under the chemical stress was tested. Application of sediments to soil was severely phytotoxic to T. patula and mildly to F. arundinacea. On the other hand, the addition of sediments enhanced the soil enzymatic activity. Inoculation with both bacterial strains significantly increased shoot (up to 2.4-fold) and root (up to 3.4-fold) biomass of T. patula. The study revealed that the selected plant growth-promoting bacterial strains were able to alleviate phytotoxicity of bottom sediments to T. patula resulting from the complex character of the contamination. 相似文献
In cell differentiation, a less specialized cell differentiates into a more specialized one, even though all cells in one organism have (almost) the same genome. Epigenetic factors such as histone modifications are known to play a significant role in cell differentiation. We previously introduce cell-type trees to represent the differentiation of cells into more specialized types, a representation that partakes of both ontogeny and phylogeny.
Results
We propose a maximum-likelihood (ML) approach to build cell-type trees and show that this ML approach outperforms our earlier distance-based and parsimony-based approaches. We then study the reconstruction of ancestral cell types; since both ancestral and derived cell types can coexist in adult organisms, we propose a lifting algorithm to infer internal nodes. We present results on our lifting algorithm obtained both through simulations and on real datasets.
Conclusions
We show that our ML-based approach outperforms previously proposed techniques such as distance-based and parsimony-based methods. We show our lifting-based approach works well on both simulated and real data.
Cardioprotection by preconditioning is a central issue of current research on heart function. Several reports indicate that preventing the assembly and opening of the mitochondrial permeability transition pore (mPTP) protects the heart against ischemia–reperfusion injury. We have previously reported that brief episodes of tachycardia decrease the infarct size produced by subsequent prolonged occlusion of a coronary artery, indicating that controlled tachycardia is an effective preconditioning manoeuvre. The effects of preconditioning tachycardia on mPTP activity have not been reported. Therefore, in this work we investigated if preconditioning tachycardia protects against calcium-induced mitochondrial swelling, a measure of mPTP activity. We found that tachycardia decreased by 2.5-fold the rate of mitochondrial calcium-induced swelling, a factor that presumably contributes to the cardioprotective effects of tachycardia. The oxidative status of the cell increased after tachycardia, as evidenced by the decrease in the cellular and mitochondrial GSH/GSSG ratio. We also observed increased S-glutathionylation of cyclophilin-D, an essential mPTP component, after tachycardia. This reversible redox modification of cyclophilin-D may account, al least in part, for the decreased mPTP activity produced by preconditioning tachycardia. 相似文献
OBJECTIVE: The aim of this study was to compare the immunohistochemical expression of vascular endothelial growth factors VEGF-C and D, as well as the expression of VEGFR-3 in VIN and vulvar invasive cancer and to compare the density of lymphatic marker D2-40 antibody in both groups, and to compare them with different clinicopathologic features. Materials & Methods: The study was performed using tissue material and clinical data from 100 women diagnosed with VIN and 100 women diagnosed with invasive vulvar cancer. Results: No significant differences were found in the expression of VEGF-C and -D or VEGFR-3 between those patients with VIN and those with invasive vulvar cancers. Weak expression of VEGF-C was confirmed only in two cases of the analyzed series; in all cases, expression of VEGF-D and VEGFR-3 was observed. The strongest expression of VEGF-D and VEGFR-3 was observed in the group of invasive cancers. The highest density of lymphatic vessels per 2 mm was observed in VIN. In the cancer group, small lymphatic vessels with a narrow oval lumen were observed. Moreover, in two cases of vulvar cancer, the presence of intratumoral lymphatic vessels was observed. Conclusions: These results suggest that lymphangiogenesis begins at the preinvasive stage of vulvar carcinogenesis and suggests the important role of VEGF-C, VEGF-D, VEGFR-3 and LV (D2-40) as prognostic factors in the process of carcinogenesis in the vulvar area. 相似文献
Neither androgen ablation nor chemotherapeutic agents are effective in reducing the risk of prostate cancer progression. On the other hand, multifaceted effects of phytochemicals, such as triterpene saponins, on cancer cells have been suggested. A promising safety and tolerability profile indicate their possible application in the treatment of advanced prostate cancers. We analyzed the specificity, selectivity and versatility of desglucoanagalloside B effects on human prostate cancer cells derived from prostate cancer metastases to brain (DU-145 cells) and bone (PC-3 cells). Prominent growth arrest and apoptotic response of both cell types was observed in the presence of sub-micromolar desglucoanagalloside B concentrations. This was accompanied by cytochrome c release and caspase 3/7 activation. A relatively low cytostatic and pro-apoptotic response of cancer cells to a desglucoanagalloside B analog, anagallosaponin IV, illustrated the specificity of the effects of desglucoanagalloside B, whereas the low sensitivity of normal prostate PNT2 cells to desglucoanagalloside B showed the selectivity of its action. Inhibition of cancer cell motility was observed in the presence of both saponins, however only desglucoanagalloside B attenuated cancer cell invasive potential, predominantly through an effect on cell elastic properties. These data demonstrate the versatility of its effects on prostate cancer cells. In contrast to PNT2 cells, cancer cells tested in this study were relatively resistant to mitoxantrone. The multifaceted action of desglucoanagalloside B on basic cellular traits, crucial for prostate cancer progression, opens perspectives for elaboration of combined palliative therapies and new prostate cancer prophylaxis regimens. 相似文献
The structure of microbial consortia in wastewater treatment facilities is a resultant of environmental conditions created by the operational parameters of the purification process. In the research, activated sludge from nine Polish wastewater treatment plants (WWTPs) was investigated at a molecular level to determine the impact of the complexity of biological treatment line and the influent composition on the species structure and the diversity of bacterial consortia. The community fingerprints and technological data were subjected to the canonical correspondence and correlation analyses. The number of separated biological processes realized in the treatment line and the presence of industrial wastewater in the influent were the key factors determining the species structure of total and ammonia-oxidizing bacteria in biomass. The N2O-reducers community composition depended significantly on the design of the facility; the highest species richness of denitrifiers was noted in the WWTPs with separated denitrification tanks. The contribution of industrial streams to the inflow affected the diversity of total and denitrifying bacterial consortia and diminished the diversity of ammonia oxidizers. The obtained data are valuable for engineers since they revealed the main factors, including the design of wastewater treatment plant, influencing the microbial groups critical for the stability of purification processes. 相似文献
Papaya (Carica papaya L.) is a climacteric fruit susceptible to postharvest losses due to the ethylene-induced ripening. The inhibitor of ethylene action, 1-methylcyclopropene (1-MCP), has been used worldwide as a safe postharvest non-toxic agent, but the physiological and biochemical modifications induced by 1-MCP are not well understood. Using the 2-DE analysis, we report the changes in the protein profiles after 6 and 18 days of postharvest and the effect of the effect of 1-MCP treatment on fruits. Twenty seven protein spots showing differences in abundance during ripening were successfully identified by nano-LC-ESI/MS/MS. Some spots corresponded to the cell wall degrading enzymes related to fruit ripening; others were involved in oxidative damage protection, protein folding, and cell growth and survival that were induced by 1-MCP. This is the first proteomic report analyzing the effect of 1-MCP in papaya ripening. The present data will help to shed light on papaya fruit ripening process. 相似文献