首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   747篇
  免费   43篇
  国内免费   2篇
  2024年   1篇
  2023年   6篇
  2022年   14篇
  2021年   37篇
  2020年   24篇
  2019年   22篇
  2018年   23篇
  2017年   30篇
  2016年   40篇
  2015年   49篇
  2014年   70篇
  2013年   65篇
  2012年   73篇
  2011年   56篇
  2010年   48篇
  2009年   31篇
  2008年   21篇
  2007年   43篇
  2006年   32篇
  2005年   26篇
  2004年   19篇
  2003年   22篇
  2002年   10篇
  2001年   5篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1988年   1篇
  1986年   2篇
  1984年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1969年   1篇
排序方式: 共有792条查询结果,搜索用时 15 毫秒
101.
102.
One of the major lipid peroxidation products trans-4-hydroxy-2-nonenal (HNE), forms cyclic propano- or ethenoadducts bearing six- or seven-carbon atom side chains to G > C ? A > T. To specify the role of SOS DNA polymerases in HNE-induced mutations, we tested survival and mutation spectra in the lacZα gene of M13mp18 phage, whose DNA was treated in vitro with HNE, and which was grown in uvrA? Escherichia coli strains, carrying one, two or all three SOS DNA polymerases. When Pol IV was the only DNA SOS polymerase in the bacterial host, survival of HNE-treated M13 DNA was similar to, but mutation frequency was lower than in the strain containing all SOS DNA polymerases. When only Pol II or Pol V were present in host bacteria, phage survival decreased dramatically. Simultaneously, mutation frequency was substantially increased, but exclusively in the strain carrying only Pol V, suggesting that induction of mutations by HNE is mainly dependent on Pol V. To determine the role of Pol II and Pol IV in HNE induced mutagenesis, Pol II or Pol IV were expressed together with Pol V. This resulted in decrease of mutation frequency, suggesting that both enzymes can compete with Pol V, and bypass HNE-DNA adducts in an error-free manner. However, HNE-DNA adducts were easily bypassed by Pol IV and only infrequently by Pol II.Mutation spectrum established for strains expressing only Pol V, showed that in uvrA? bacteria the frequency of base substitutions and recombination increased in relation to NER proficient strains, particularly mutations at adenine sites. Among base substitutions A:T  C:G, A:T  G:C, G:C  A:T and G:C  T:A prevailed.The results suggest that Pol V can infrequently bypass HNE-DNA adducts inducing mutations at G, C and A sites, while bypass by Pol IV and Pol II is error-free, but for Pol II infrequent.  相似文献   
103.
Although cadmium is a well-established human carcinogen, the mechanisms by which it induces cancer are poorly understood. It is suggested that cadmium-mediated carcinogenesis may include the modulation of gene expression and signal-transduction pathways, interference with antioxidant enzymes, inhibition of DNA repair and DNA methylation, and induction of apoptosis. Nevertheless, no predominant mechanism playing a role in metal-induced carcinogenesis has been reported. In the present study, we used a pig Robertsonian translocation model, which is a cross between a wild boar and domestic pig resulting in Robertsonian translocation (37,XX,der15;17 or 37,XY,der15;17), to determine the role of cadmium sulfate in the modulation of genomic DNA-methylation status and the induction of aneuploidy. We found a cadmium-mediated increase in aneuploidy within chromosome group A and C, but not within chromosome group D containing the translocated chromosome der15,17 which indicates that translocated chromosome is not more prone to chromosomal aberrations than are other chromosomes. We suggest that cadmium-induced aneuploidy (up to 5-μM concentration) may be mediated by global DNA hypermethylation as monitored with HPLC and 5-mdC immunostaining. In addition, the cyto- and genotoxic potential of cadmium was evaluated. Cadmium sulfate was able to induce apoptosis, inhibit cell-proliferative status and expression of nucleolar organizer regions (NORs), and increase oxidative DNA damage (8-oxoG content).  相似文献   
104.
The melting properties of various triblock copolymers with random coil middle blocks (100-800 amino acids) and triple helix-forming (Pro-Gly-Pro)(n) end blocks (n = 6-16) were compared. These gelatin-like molecules were produced as secreted proteins by recombinant yeast. The investigated series shows that the melting temperature (T(m)) can be genetically engineered to specific values within a very wide range by varying the length of the end block. Elongation of the end blocks also increased the stability of the helices under mechanical stress. The length-dependent melting free energy and T(m) of the (Pro-Gly-Pro)(n) helix appear to be comparable for these telechelic polymers and for free (Pro-Gly-Pro)(n) peptides. Accordingly, the T(m) of the polymers appeared to be tunable independently of the nature of the investigated non-cross-linking middle blocks. The flexibility of design and the amounts in which these nonanimal biopolymers can be produced (g/L range) create many possibilities for eventual medical application.  相似文献   
105.
The thick ascending limb of Henle's loop (TAL) is capable of metabolizing arachidonic acid (AA) by cytochrome P450 (CYP450) and cyclooxygenase (COX) pathways and has been identified as a nephron segment that contributes to salt-sensitive hypertension. Previous studies demonstrated a prominent role for CYP450-dependent metabolism of AA to products that inhibited ion transport pathways in the TAL. However, COX-2 is constitutively expressed along all segments of the TAL and is increased in response to diverse stimuli. The ability of Tamm-Horsfall glycoprotein, a selective marker of cortical TAL (cTAL) and medullary (mTAL), to bind TNF and localize it to this nephron segment prompted studies to determine the capacity of mTAL cells to produce TNF and determine its effects on mTAL function. The colocalization of calcium-sensing receptor (CaR) and COX-2 in the TAL supports the notion that activation of CaR induces TNF-dependent COX-2 expression and PGE? synthesis in mTAL cells. Additional studies showed that TNF produced by mTAL cells inhibits ??Rb uptake, an in vitro correlate of natriuresis, in an autocrine- and COX-2-dependent manner. The molecular mechanism for these effects likely includes inhibition of Na?-K?-2Cl? cotransporter (NKCC2) expression and trafficking.  相似文献   
106.
107.
Streptococcus pyogenes, is an important human pathogen classified within the pyogenic group of streptococci, exclusively adapted to the human host. Our goal was to employ a comparative evolutionary approach to better understand the genomic events concomitant with S. pyogenes human adaptation. As part of ascertaining these events, we sequenced the genome of one of the potential sister species, the agricultural pathogen S. canis, and combined it in a comparative genomics reconciliation analysis with two other closely related species, Streptococcus dysgalactiae and Streptococcus equi, to determine the genes that were gained and lost during S. pyogenes evolution. Genome wide phylogenetic analyses involving 15 Streptococcus species provided convincing support for a clade of S. equi, S. pyogenes, S. dysgalactiae, and S. canis and suggested that the most likely S. pyogenes sister species was S. dysgalactiae. The reconciliation analysis identified 113 genes that were gained on the lineage leading to S. pyogenes. Almost half (46%) of these gained genes were phage associated and 14 showed significant matches to experimentally verified bacteria virulence factors. Subsequent to the origin of S. pyogenes, over half of the phage associated genes were involved in 90 different LGT events, mostly involving different strains of S. pyogenes, but with a high proportion involving the horse specific pathogen S. equi subsp. equi, with the directionality almost exclusively (86%) in the S. pyogenes to S. equi direction. Streptococcus agalactiae appears to have played an important role in the evolution of S. pyogenes with a high proportion of LGTs originating from this species. Overall the analysis suggests that S. pyogenes adaptation to the human host was achieved in part by (i) the integration of new virulence factors (e.g. speB, and the sal locus) and (ii) the construction of new regulation networks (e.g. rgg, and to some extent speB).  相似文献   
108.
Abstract Proteases recognize their endogenous substrates based largely on a sequence of proteinogenic amino acids that surrounds the cleavage site. Currently, several methods are available to determine protease substrate specificity based on approaches employing proteinogenic amino acids. The knowledge about the specificity of proteases can be significantly extended by application of structurally diverse families of non-proteinogenic amino acids. From a chemical point of view, this information may be used to design specific substrates, inhibitors, or activity-based probes, while biological functions of proteases, such as posttranslational modifications can also be investigated. In this review, we discuss current and prospective technologies for application of non-proteinogenic amino acids in protease substrate specificity profiling.  相似文献   
109.
110.
Peroxisome proliferator-activated receptor (PPAR) delta is an important regulator of fatty acid (FA) metabolism. Angiopoietin-like 4 (Angptl4), a multifunctional protein, is one of the major targets of PPAR delta in skeletal muscle cells. Here we investigated the regulation of Angptl4 and its role in mediating PPAR delta functions using human, rat and mouse myotubes. Expression of Angptl4 was upregulated during myotubes differentiation and by oleic acid, insulin and PPAR delta agonist GW501516. Treatment with GW501516 or Angptl4 overexpression inhibited both lipoprotein lipase (LPL) activity and LPL-dependent uptake of FAs whereas uptake of BSA-bound FAs was not affected by either treatment. Activation of retinoic X receptor (RXR), PPAR delta functional partner, using bexarotene upregulated Angptl4 expression and inhibited LPL activity in a PPAR delta dependent fashion. Silencing of Angptl4 blocked the effect of GW501516 and bexarotene on LPL activity. Treatment with GW501516 but not Angptl4 overexpression significantly increased palmitate oxidation. Furthermore, Angptl4 overexpression did not affect the capacity of GW501516 to increase palmitate oxidation. Basal and insulin stimulated glucose uptake, glycogen synthesis and glucose oxidation were not significantly modulated by Angptl4 overexpression. Our findings suggest that FAs-PPARdelta/RXR-Angptl4 axis controls the LPL-dependent uptake of FAs in myotubes, whereas the effect of PPAR delta activation on beta-oxidation is independent of Angptl4.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号