首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7341篇
  免费   587篇
  7928篇
  2023年   58篇
  2022年   107篇
  2021年   217篇
  2020年   111篇
  2019年   146篇
  2018年   195篇
  2017年   196篇
  2016年   243篇
  2015年   424篇
  2014年   415篇
  2013年   564篇
  2012年   671篇
  2011年   597篇
  2010年   376篇
  2009年   312篇
  2008年   410篇
  2007年   419篇
  2006年   349篇
  2005年   314篇
  2004年   308篇
  2003年   272篇
  2002年   271篇
  2001年   76篇
  2000年   57篇
  1999年   63篇
  1998年   70篇
  1997年   43篇
  1996年   48篇
  1995年   40篇
  1994年   32篇
  1993年   25篇
  1992年   31篇
  1991年   30篇
  1990年   64篇
  1989年   21篇
  1988年   29篇
  1987年   24篇
  1986年   33篇
  1985年   22篇
  1984年   30篇
  1983年   27篇
  1982年   16篇
  1981年   26篇
  1980年   9篇
  1979年   12篇
  1978年   14篇
  1975年   11篇
  1974年   9篇
  1973年   9篇
  1968年   8篇
排序方式: 共有7928条查询结果,搜索用时 15 毫秒
991.
The biofilm lifestyle, where microbial cells are aggregated because of expression of cell-to-cell interconnecting compounds, is believed to be of paramount importance to microbes in the environment. Because microbes must be able to alternate between sessile and planktonic states, it is anticipated that they must be able to regulate their ability to form biofilm and to dissolve biofilm. We present an investigation of a biofilm dissolution process occurring in flow-chamber-grown Pseudomonas putida biofilms. Local starvation-induced biofilm dissolution appears to be an integrated part of P. putida biofilm development that causes characteristic structural rearrangements. Rapid global dissolution of entire P. putida biofilms was shown to occur in response to carbon starvation. Genetic analysis suggested that the adjacent P. putida genes PP0164 and PP0165 play a role in P. putida biofilm formation and dissolution. PP0164 encodes a putative periplasmic protein of previously unknown function, and PP0164 mutant bacteria are sticky, and unable to reduce their adhesiveness and dissolve their biofilm in response to carbon starvation. PP0165 encodes a putative transmembrane protein containing GGDEF and EAL domains, and PP0165 mutant bacteria are unable to increase their adhesiveness and form biofilm. We suggest that the PP0164 and PP0165 proteins are involved in the regulation of the adhesiveness of the bacteria; the PP0165 protein through c-di-GMP signalling, and the PP0164 protein as a transducer of the signal.  相似文献   
992.
Autotaxin (ATX), or nucleotide pyrophosphatase-phosphodiesterase 2, is a secreted lysophospholipase D that promotes cell migration, metastasis, and angiogenesis. ATX generates lysophosphatidic acid (LPA), a lipid mitogen and motility factor that acts on several G protein-coupled receptors. Here we report that ATX-deficient mice die at embryonic day 9.5 (E9.5) with profound vascular defects in yolk sac and embryo resembling the Galpha13 knockout phenotype. Furthermore, at E8.5, ATX-deficient embryos showed allantois malformation, neural tube defects, and asymmetric headfolds. The onset of these abnormalities coincided with increased expression of ATX and LPA receptors in normal embryos. ATX heterozygous mice appear healthy but show half-normal ATX activity and plasma LPA levels. Our results reveal a critical role for ATX in vascular development, indicate that ATX is the major LPA-producing enzyme in vivo, and suggest that the vascular defects in ATX-deficient embryos may be explained by loss of LPA signaling through Galpha13.  相似文献   
993.
Genetic analysis of familial Alzheimer's disease has revealed that mutations in the gamma-secretase enzyme presenilin promote toxic Abeta secretion; however, presenilin mutations might also influence tau hyperphosphorylation and neurodegeneration through gamma-secretase-independent mechanisms. To address this possibility and determine whether other components of the gamma-secretase complex possess similar regulatory functions, we analyzed the roles of presenilin, nicastrin, and aph-1 in a Drosophila model for tau-induced neurodegeneration. Here, we show that presenilin and nicastrin prevent tau toxicity by modulating the PI3K/Akt/GSK3beta phosphorylation pathway, whereas aph-1 regulates aPKC/PAR-1 activities. Moreover, we found that these transmembrane proteins differentially regulate the intracellular localization of GSK3beta and aPKC at cell junctions. Inhibition of gamma-secretase activity neither interfered with these kinase pathways nor induced aberrant tau phosphorylation. These results establish new in vivo molecular functions for the three components of the gamma-secretase complex and reveal a different mechanism that might contribute to neuronal degeneration in Alzheimer's disease.  相似文献   
994.
A membrane-specific tubulin-like protein, found in preparations of synaptic plasma membranes and brain mitochondria, was analyzed by chemical and proteolytic peptide mapping to determine which part of the molecule was different from cytoplasmic tubulin. The membrane polypeptide was identical to alpha tubulin in the first two-thirds of the molecule containing the amino terminal, as found by peptide mapping. However, some differences were observed in the peptide maps of the carboxy terminal one third of the molecule which includes a domain that is important in the regulation of tubulin self-assembly.  相似文献   
995.
Recent phylogenetic reconstructions suggest that axially condensed flower-like structures evolved iteratively in seed plants from either simple or compound strobili. The simple-strobilus model of flower evolution, widely applied to the angiosperm flower, interprets the inflorescence as a compound strobilus. The conifer cone and the gnetalean ‘flower’ are commonly interpreted as having evolved from a compound strobilus by extreme condensation and (at least in the case of male conifer cones) elimination of some structures present in the presumed ancestral compound strobilus. These two hypotheses have profoundly different implications for reconstructing the evolution of developmental genetic mechanisms in seed plants. If different flower-like structures evolved independently, there should intuitively be little commonality of patterning genes. However, reproductive units of some early-divergent angiosperms, including the extant genus Trithuria (Hydatellaceae) and the extinct genus Archaefructus (Archaefructaceae), apparently combine features considered typical of flowers and inflorescences. We re-evaluate several disparate strands of comparative data to explore whether flower-like structures could have arisen by co-option of flower-expressed patterning genes into independently evolved condensed inflorescences, or vice versa. We discuss the evolution of the inflorescence in both gymnosperms and angiosperms, emphasising the roles of heterotopy in dictating gender expression and heterochrony in permitting internodal compression.  相似文献   
996.
The centromere is the DNA locus that dictates kinetochore formation and is visibly apparent as heterochromatin that bridges sister kinetochores in metaphase. Sister centromeres are compacted and held together by cohesin, condensin, and topoisomerase-mediated entanglements until all sister chromosomes bi-orient along the spindle apparatus. The establishment of tension between sister chromatids is essential for quenching a checkpoint kinase signal generated from kinetochores lacking microtubule attachment or tension. How the centromere chromatin spring is organized and functions as a tensiometer is largely unexplored. We have discovered that centromere chromatin loops generate an extensional/poleward force sufficient to release nucleosomes proximal to the spindle axis. This study describes how the physical consequences of DNA looping directly underlie the biological mechanism for sister centromere separation and the spring-like properties of the centromere in mitosis.  相似文献   
997.
Sclerotinia sclerotiorum is an important plant pathogen with worldwide distribution that causes severe economic losses of various agricultural crops such as soybean. This fungus is normally controlled with synthetic chemical fungicides that pose risks to the environment, and can be harmful to human health, and they can also induce resistance in pests. The aim of this study was to investigate the potential of Trichoderma asperelloides as a biocontrol agent towards white mold disease on soybeans crops. The antagonism of two strains of T. asperelloides (T25 and T42) isolated from soil samples was determined in-vitro by dual-culture confrontation testing on nine S. sclerotiorum strains obtained from sclerotia collected on diseased soybean plants. The mycelial growth and inhibition of carpogenic and ascospore germination by T. asperelloides extracts, as well as the efficacy of these on white mold control in soybeans were evaluated. Both strains of T. asperelloides exhibited high potential of antagonism. Methanolic and ethyl acetate extracts of the two T. asperelloides strains showed excellent growth inhibition (60–100%) on all of the pathogens tested. The ethyl acetate extracts of both T. asperelloides strains exhibited the highest efficacy against carpogenic germination, decreasing by 20–30% the number of ascospores per apothecium. Strains of T. asperelloides tested were more efficient in controlling white mold than two commercial products made from Trichoderma harzianum. The new strains of T. asperelloides have potential for successful biological control of white mold disease of soybean crops in the field.  相似文献   
998.
The superficial layer of the skin, the stratum corneum (SC), consists of corneocytes surrounded by lipid regions and acts as a protective barrier for the body against water loss, toxic agents and microorganisms. As most substances permeate the stratum corneum through the lipid regions, lipid organization is considered crucial for the skin barrier function. Here, we investigate the potential of in vivo confocal Raman spectroscopy to describe the composition and organization of the SC. Confocal Raman spectroscopy is finding increasing use in the characterization of skin in biomedical, pharmaceutical and cosmetic applications. In this work, we analyze the spectra using chemometric methods and obtain principal components that correspond to the primary skin constituents: protein (keratin), natural moisturizing factor (NMF), water and lipid contributions in both ordered (orthorhombic) and disordered structural organization. By identifying these important components of the SC, these results highlight the utility of this in vivo, non-invasive, and depth resolved tool at the forefront of skin research.  相似文献   
999.
The arthropod cuticle acts as a physiochemical barrier protecting the organism from pathogens' entry. Entomopathogenic fungi actively penetrate the cuticles of arthropod hosts and are therefore directly affected by cuticle composition. Previously we have observed that Metarhizium spp. developing on resistant ticks ultimately die without penetrating tick's cuticle, suggesting that the cuticles of resistant ticks have antifungal compounds. In the present study, lipids and water-soluble cuticular components were extracted from engorged female tick cuticles, of one susceptible and one resistant tick species to Metarhizium spp. While conidia exposed to lipids from the susceptible tick, Rhipicephalus annulatus, germinated and differentiated into appressorium, conidia exposed to lipids from the resistant tick, Hyalomma excavatum, were inhibited. Soluble cuticular component extracts from both susceptible and resistant ticks stimulated conidial germination but not appressorium differentiation. A comparative analysis of the fatty acid profile in lipid extract of each tick exhibited similar compositions, but the relative abundance of C16:0, C18:0, C18:1ω9C and C20:0 was 2–5 times higher in the extracts from resistant ticks. All of these fatty acids inhibited conidial germination in vitro at 1% and 0.1% w/v concentration, but C20:0 stimulated appressorium differentiation at low concentration. This is the first report demonstrating a possible link between the presence of antifungal compounds in a specific concentration in tick cuticle and tick resistance to infection.  相似文献   
1000.
The resistance to experimental, highly frequent disturbance has been analysed in three congeneric, strong-resprouter species (Erica australis, E. scoparia and E. arborea) that co-occur in heath-dominated communities of the northern side of the Strait of Gibraltar, southern Spain. To do so, mature individuals of the three species from a long undisturbed location were clipped at the ground level every sixth month during two years. The relationship between the resprouted biomass dry weight (as indicative of the resprouting vigour) and the upper surface area of the lignotuber along the experiment was established separately for each species at each clipping event by means of linear regressions analysis. The resprouting vigour of the three species was compared by means of independent one-way ANOVAs within each clipping event. Resprouting vigour decreased after recurrent clippings in the three species. Nevertheless, significant differences between species in this loss of resprouting vigour were detected, being E. scoparia the most resistant to the experimental, highly frequent clipping. It is concluded that experimental levels of recurrent disturbance may help to find out differences in resilience within similar (taxonomically, morfologically and/or ecologically), strong-resprouter plant species. Considering the history of forestry management in the nothern side of the Strait of Gibraltar, differences in this regard between the three Erica species may contribute to explain their somewhat segregated ecological distribution in this region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号