首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   3篇
  2021年   2篇
  2019年   1篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2012年   3篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2007年   2篇
  2006年   4篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1991年   1篇
  1978年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
11.
Seed dormancy is a common phase of the plant life cycle, and several parts of the seed can contribute to dormancy. Whole seeds, seeds lacking the testa, embryos, and isolated aleurone layers of Arabidopsis (Arabidopsis thaliana) were used in experiments designed to identify components of the Arabidopsis seed that contribute to seed dormancy and to learn more about how dormancy and germination are regulated in this species. The aleurone layer was found to be the primary determinant of seed dormancy. Embryos from dormant seeds, however, had a lesser growth potential than those from nondormant seeds. Arabidopsis aleurone cells were examined by light and electron microscopy, and cell ultrastructure was similar to that of cereal aleurone cells. Arabidopsis aleurone cells responded to nitric oxide (NO), gibberellin (GA), and abscisic acid, with NO being upstream of GA in a signaling pathway that leads to vacuolation of protein storage vacuoles and abscisic acid inhibiting vacuolation. Molecular changes that occurred in embryos and aleurone layers prior to germination were measured, and these data show that both the aleurone layer and the embryo expressed the NO-associated gene AtNOS1, but only the embryo expressed genes for the GA biosynthetic enzyme GA3 oxidase.  相似文献   
12.
13.
Despite the ubiquitous nature of sleep, its functions remain a mystery. In an attempt to address this, many researchers have studied behavioural and electrophysiological phenomena associated with sleep in a diversity of animals. The great majority of vertebrates and invertebrates display a phase of immobility that could be considered as a sort of sleep. Terrestrial mammals and birds, both homeotherms, show two sleep states with distinct behavioural and electrophysiological features. However, whether these features have evolved independently in each clade or were inherited from a common ancestor remains unknown. Unfortunately, amphibians and reptiles, key taxa in understanding the evolution of sleep given their position at the base of the tetrapod and amniote tree, respectively, remain poorly studied in the context of sleep. This review presents an overview of what is known about sleep in amphibians and reptiles and uses the existing data to provide a preliminary analysis of the evolution of behavioural and electrophysiological features of sleep in amphibians and reptiles. We also discuss the problems associated with analysing existing data, as well as the difficulty in inferring homologies of sleep stages based on limited data in the context of an essentially mammalian‐centric definition of sleep. Finally, we highlight the importance of developing comparative approaches to sleep research that may benefit from the great diversity of species with different ecologies and morphologies in order to understand the evolution and functions of sleep.  相似文献   
14.
Nitric oxide reduces seed dormancy in Arabidopsis   总被引:15,自引:0,他引:15  
Dormancy is a property of many mature seeds, and experimentation over the past century has identified numerous chemical treatments that will reduce seed dormancy. Nitrogen-containing compounds including nitrate, nitrite, and cyanide break seed dormancy in a range of species. Experiments are described here that were carried out to further our understanding of the mechanism whereby these and other compounds, such as the nitric oxide (NO) donor sodium nitroprusside (SNP), bring about a reduction in seed dormancy of Arabidopsis thaliana. A simple method was devised for applying the products of SNP photolysis through the gas phase. Using this approach it was shown that SNP, as well as potassium ferricyanide (Fe(III)CN) and potassium ferrocyanide (Fe(II)CN), reduced dormancy of Arabidopsis seeds by generating cyanide (CN). The effects of potassium cyanide (KCN) on dormant seeds were tested and it was confirmed that cyanide vapours were sufficient to break Arabidopsis seed dormancy. Nitrate and nitrite also reduced Arabidopsis seed dormancy and resulted in substantial rates of germination. The effects of CN, nitrite, and nitrate on dormancy were prevented by the NO scavenger c-PTIO. It was confirmed that NO plays a role in reducing seed dormancy by using purified NO gas, and a model to explain how nitrogen-containing compounds may break dormancy in Arabidopsis is presented.  相似文献   
15.
Chamaeleons are well known for their unique suite of morphological adaptations. Whereas most chamaeleons are arboreal and have long tails, which are used during arboreal acrobatic manoeuvres, Malagasy dwarf chamaeleons (Brookesia) are small terrestrial lizards with relatively short tails. Like other chamaeleons, Brookesia have grasping feet and use these to hold on to narrow substrates. However, in contrast to other chamaeleons, Brookesia place the tail on the substrate when walking on broad substrates, thus improving stability. Using three-dimensional synchrotron X-ray phase-contrast imaging, we demonstrate a set of unique specializations in the tail associated with the use of the tail during locomotion. Additionally, our imaging demonstrates specializations of the inner ear that may allow these animals to detect small accelerations typical of their slow, terrestrial mode of locomotion. These data suggest that the evolution of a terrestrial lifestyle in Brookesia has gone hand-in-hand with the evolution of a unique mode of locomotion and a suite of morphological adaptations allowing for stable locomotion on a wide array of substrates.  相似文献   
16.
Most birds use at least two modes of locomotion: flying and walking (terrestrial locomotion). Whereas the wings and tail are used for flying, the legs are mainly used for walking. The role of other body segments remains, however, poorly understood. In this study, we examine the kinematics of the head, the trunk, and the legs during terrestrial locomotion in the quail (Coturnix coturnix). Despite the trunk representing about 70% of the total body mass, its function in locomotion has received little scientific interest to date. This prompted us to focus on its role in terrestrial locomotion. We used high-speed video fluoroscopic recordings of quails walking at voluntary speeds on a trackway. Dorso-ventral and lateral views of the motion of the skeletal elements were recorded successively and reconstructed in three dimensions using a novel method based on the temporal synchronisation of both views. An analysis of the trajectories of the body parts and their coordination showed that the trunk plays an important role during walking. Moreover, two sub-systems participate in the gait kinematics: (i) the integrated 3D motion of the trunk and thighs allows for the adjustment of the path of the centre of mass; (ii) the motion of distal limbs transforms the alternating forward motion of the feet into a continuous forward motion at the knee and thus assures propulsion. Finally, head bobbing appears qualitatively synchronised to the movements of the trunk. An important role for the thigh muscles in generating the 3D motion of the trunk is suggested by an analysis of the pelvic anatomy.  相似文献   
17.
The green picoalga Ostreococcus is emerging as a simple plant model organism, and two species, O. lucimarinus and O. tauri, have now been sequenced and annotated manually. To evaluate the completeness of the metabolic annotation of both species, metabolic networks of O. lucimarinus and O. tauri were reconstructed from the KEGG database, thermodynamically constrained, elementally balanced, and functionally evaluated. The draft networks contained extensive gaps and, in the case of O. tauri, no biomass components could be produced due to an incomplete Calvin cycle. To find and remove gaps from the networks, an extensive reference biochemical reaction database was assembled using a stepwise approach that minimized the inclusion of microbial reactions. Gaps were then removed from both Ostreococcus networks using two existing gap-filling methodologies. In the first method, a bottom-up approach, a minimal list of reactions was added to each model to enable the production of all metabolites included in our biomass equation. In the second method, a top-down approach, all reactions in the reference database were added to the target networks and subsequently trimmed away based on the sequence alignment scores of identified orthologues. Because current gap-filling methods do not produce unique solutions, a quality metric that includes a weighting for phylogenetic distance and sequence similarity was developed to distinguish between gap-filling results automatically. The draft O. lucimarinus and O. tauri networks required the addition of 56 and 70 reactions, respectively, in order to produce the same biomass precursor metabolites that were produced by our plant reference database.  相似文献   
18.
19.
In this essay we examine whether a theoretical and conceptual framework for systems biology could be built from the [Bailly and Longo, 2008] and [Bailly and Longo, 2009] proposal. These authors aim to understand life as a coherent critical structure, and propose to develop an extended physical approach of evolution, as a diffusion of biomass in a space of complexity. Their attempt leads to a simple mathematical reconstruction of Gould’s assumption (1989) concerning the bacterial world as a “left wall of least complexity” that we will examine. Extended physical systems are characterized by their constructive properties. Time is acting and new properties emerge by their history that can open the list of their initial properties. This conceptual and theoretical framework is nothing more than a philosophical assumption, but as such it provides a new and exciting approach concerning the evolution of life, and the transition between physics and biology.  相似文献   
20.
Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function was used to explain observed miniHimar transposon insertion patterns, and gene essentiality calls were made by transposon insertion frequency analysis (TIFA). TIFA incorporated the observed genome and sequence motif bias of the miniHimar transposon. The gene essentiality calls were compared to: 1) previous genome-wide direct gene-essentiality assignments; and, 2) flux balance analysis (FBA) predictions from an existing genome-scale metabolic model of Shewanella oneidensis MR-1. A three-way comparison between FBA, TIFA, and the direct essentiality calls was made to validate the TIFA approach. The refinement in the interpretation of observed transposon insertions demonstrated that genes without insertions are not necessarily essential, and that genes that contain insertions are not always nonessential. The TIFA calls were in reasonable agreement with direct essentiality calls for S. oneidensis, but agreed more closely with E. coli essentiality calls for orthologs. The TIFA gene essentiality calls were in good agreement with the MR-1 FBA essentiality predictions, and the agreement between TIFA and FBA predictions was substantially better than between the FBA and the direct gene essentiality predictions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号