首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152443篇
  免费   12240篇
  国内免费   6986篇
  171669篇
  2024年   240篇
  2023年   1613篇
  2022年   3535篇
  2021年   6043篇
  2020年   3955篇
  2019年   4841篇
  2018年   4959篇
  2017年   3765篇
  2016年   5615篇
  2015年   8369篇
  2014年   9674篇
  2013年   10693篇
  2012年   12813篇
  2011年   11799篇
  2010年   7314篇
  2009年   6354篇
  2008年   8019篇
  2007年   7350篇
  2006年   6577篇
  2005年   5596篇
  2004年   5166篇
  2003年   4655篇
  2002年   4285篇
  2001年   2499篇
  2000年   2262篇
  1999年   2342篇
  1998年   1613篇
  1997年   1595篇
  1996年   1423篇
  1995年   1309篇
  1994年   1293篇
  1993年   1009篇
  1992年   1375篇
  1991年   1163篇
  1990年   883篇
  1989年   828篇
  1988年   759篇
  1987年   660篇
  1986年   622篇
  1985年   692篇
  1984年   531篇
  1983年   454篇
  1982年   487篇
  1981年   389篇
  1980年   362篇
  1979年   305篇
  1978年   299篇
  1977年   268篇
  1974年   261篇
  1973年   249篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
102.
103.
A low-protein diet supplemented with ketoacids maintains nutritional status in patients with diabetic nephropathy. The activation of autophagy has been shown in the skeletal muscle of diabetic and uremic rats. This study aimed to determine whether a low-protein diet supplemented with ketoacids improves muscle atrophy and decreases the increased autophagy observed in rats with type 2 diabetic nephropathy. In this study, 24-week-old Goto-Kakizaki male rats were randomly divided into groups that received either a normal protein diet (NPD group), a low-protein diet (LPD group) or a low-protein diet supplemented with ketoacids (LPD+KA group) for 24 weeks. Age- and weight-matched Wistar rats served as control animals and received a normal protein diet (control group). We found that protein restriction attenuated proteinuria and decreased blood urea nitrogen and serum creatinine levels. Compared with the NPD and LPD groups, the LPD+KA group showed a delay in body weight loss, an attenuation in soleus muscle mass loss and a decrease of the mean cross-sectional area of soleus muscle fibers. The mRNA and protein expression of autophagy-related genes, such as Beclin-1, LC3B, Bnip3, p62 and Cathepsin L, were increased in the soleus muscle of GK rats fed with NPD compared to Wistar rats. Importantly, LPD resulted in a slight reduction in the expression of autophagy-related genes; however, these differences were not statistically significant. In addition, LPD+KA abolished the upregulation of autophagy-related gene expression. Furthermore, the activation of autophagy in the NPD and LPD groups was confirmed by the appearance of autophagosomes or autolysosomes using electron microscopy, when compared with the Control and LPD+KA groups. Our results showed that LPD+KA abolished the activation of autophagy in skeletal muscle and decreased muscle loss in rats with type 2 diabetic nephropathy.  相似文献   
104.
Caspase-2 (casp-2) is the most conserved caspase across species, and is one of the initiator caspases activated by various stimuli. The casp-2 gene produces several alternative splicing isoforms. It is believed that the long isoform, casp-2L, promotes apoptosis, whereas the short isoform, casp-2S, inhibits apoptosis. The actual effect of casp-2S on apoptosis is still controversial, however, and the underlying mechanism for casp-2S-mediated apoptosis inhibition is unclear. Here, we analyzed the effects of casp-2S on DNA damage induced apoptosis through “gain-of-function” and “loss-of-function” strategies in ovarian cancer cell lines. We clearly demonstrated that the over-expression of casp-2S inhibited, and the knockdown of casp-2S promoted, the cisplatin-induced apoptosis of ovarian cancer cells. To explore the mechanism by which casp-2S mediates apoptosis inhibition, we analyzed the proteins which interact with casp-2S in cells by using immunoprecipitation (IP) and mass spectrometry. We have identified two cytoskeleton proteins, Fodrin and α-Actinin 4, which interact with FLAG-tagged casp-2S in HeLa cells and confirmed this interaction through reciprocal IP. We further demonstrated that casp-2S (i) is responsible for inhibiting DNA damage-induced cytoplasmic Fodrin cleavage independent of cellular p53 status, and (ii) prevents cisplatin-induced membrane blebbing. Taken together, our data suggests that casp-2S affects cellular apoptosis through its interaction with membrane-associated cytoskeletal Fodrin protein.  相似文献   
105.
Azospirillum strains isolated from the roots and rhizosphere of some plants growing in West Bengal were subjected to qualitative and quantitative evaluation for poly-3-hydroxybutyrate (PHB) production. Out of the total 49 isolates, 13 (26%) were confirmed as PHB producers according to staining and chemical assay methods. The majority of these strains belonged toAzospirillum brasilense butA. amazonense andA. lipoferum were also present. When grown in the presence of NH4Cl in the medium, the PHB content of the strains ranged from 1 to 14% of cell dry mass. The identity of the PHB extracted fromAzospirillum strain 24P-N-72 was confirmed by the characteristic UV and IR absorption peaks at 235 nm and 1730 cm−1, respectively.  相似文献   
106.
We have used the slow myosin heavy chain (MyHC) 3 gene to study the molecular mechanisms that control atrial chamber-specific gene expression. Initially, slow MyHC 3 is uniformly expressed throughout the tubular heart of the quail embryo. As cardiac development proceeds, an anterior-posterior gradient of slow MyHC 3 expression develops, culminating in atrial chamber-restricted expression of this gene following chamberization. Two cis elements within the slow MyHC 3 gene promoter, a GATA-binding motif and a vitamin D receptor (VDR)-like binding motif, control chamber-specific expression. The GATA element of the slow MyHC 3 is sufficient for expression of a heterologous reporter gene in both atrial and ventricular cardiomyocytes, and expression of GATA-4, but not Nkx2-5 or myocyte enhancer factor 2C, activates reporter gene expression in fibroblasts. Equivalent levels of GATA-binding activity were found in extracts of atrial and ventricular cardiomyocytes from embryonic chamberized hearts. These observations suggest that GATA factors positively regulate slow MyHC 3 gene expression throughout the tubular heart and subsequently in the atria. In contrast, an inhibitory activity, operating through the VDR-like element, increased in ventricular cardiomyocytes during the transition of the heart from a tubular to a chambered structure. Overexpression of the VDR, acting via the VDR-like element, duplicates the inhibitory activity in ventricular but not in atrial cardiomyocytes. These data suggest that atrial chamber-specific expression of the slow MyHC 3 gene is achieved through the VDR-like inhibitory element in ventricular cardiomyocytes at the time distinct atrial and ventricular chambers form.  相似文献   
107.
Non-B, non-T cells from spleen and bone marrow cells produce IL-4 in response to cross-linkage of high affinity receptors for Fc epsilon R or Fc gamma RII, and to treatment with calcium ionophores. Cells bearing high affinity Fc epsilon R constituted 1 to 2% of non-B, non-T cells of spleen and of total bone marrow cells from naive donors. In mice whose immune systems had been polyclonally activated by injection with anti-IgD antibodies or had been infected with Nippostrongylus brasiliensis larvae, the frequency of Fc epsilon R+ cells in splenic non-B, non-T cells was also 1 to 2% but in bone marrow from anti-IgD-injected mice donors the frequency was approximately 5%. Cell sorting experiments revealed that all of the capacity to produce IL-4 in response to immobilized IgE or IgG2a or to ionomycin was found in the Fc epsilon R+ fraction. Among the Fc epsilon R+ spleen cells from naive donors, the frequency of IL-4-producing cells was 1/20 to 1/40 whereas in mice that had been injected with anti-IgD or infected with N. brasiliensis, the frequency of IL-4 producing cells in the Fc epsilon R+ population was approximately 1/5.  相似文献   
108.
For over a century microbiologists and immunologist have categorized microorganisms as pathogenic or non-pathogenic species or genera. This definition, clearly relevant at the strain and species level for most bacteria, where differences in virulence between strains of a particular species are well known, has never been probed at the strain level in fungal species. Here, we tested the immune reactivity and the pathogenic potential of a collection of strains from Aspergillus spp, a fungus that is generally considered pathogenic in immuno-compromised hosts. Our results show a wide strain-dependent variation of the immune response elicited indicating that different isolates possess diverse virulence and infectivity. Thus, the definition of markers of inflammation or pathogenicity cannot be generalized. The profound understanding of the molecular mechanisms subtending the different immune responses will result solely from the comparative study of strains with extremely diverse properties.  相似文献   
109.
110.
Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults and there are few effective treatments. GBMs contain cells with molecular and cellular characteristics of neural stem cells that drive tumour growth. Here we compare responses of human glioblastoma-derived neural stem (GNS) cells and genetically normal neural stem (NS) cells to a panel of 160 small molecule kinase inhibitors. We used live-cell imaging and high content image analysis tools and identified JNJ-10198409 (J101) as an agent that induces mitotic arrest at prometaphase in GNS cells but not NS cells. Antibody microarrays and kinase profiling suggested that J101 responses are triggered by suppression of the active phosphorylated form of polo-like kinase 1 (Plk1) (phospho T210), with resultant spindle defects and arrest at prometaphase. We found that potent and specific Plk1 inhibitors already in clinical development (BI 2536, BI 6727 and GSK 461364) phenocopied J101 and were selective against GNS cells. Using a porcine brain endothelial cell blood-brain barrier model we also observed that these compounds exhibited greater blood-brain barrier permeability in vitro than J101. Our analysis of mouse mutant NS cells (INK4a/ARF−/−, or p53−/−), as well as the acute genetic deletion of p53 from a conditional p53 floxed NS cell line, suggests that the sensitivity of GNS cells to BI 2536 or J101 may be explained by the lack of a p53-mediated compensatory pathway. Together these data indicate that GBM stem cells are acutely susceptible to proliferative disruption by Plk1 inhibitors and that such agents may have immediate therapeutic value.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号