首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43204篇
  免费   3875篇
  国内免费   33篇
  47112篇
  2023年   166篇
  2022年   309篇
  2021年   601篇
  2020年   395篇
  2019年   489篇
  2018年   641篇
  2017年   555篇
  2016年   1044篇
  2015年   1760篇
  2014年   1882篇
  2013年   2458篇
  2012年   2984篇
  2011年   3063篇
  2010年   1946篇
  2009年   1660篇
  2008年   2518篇
  2007年   2514篇
  2006年   2276篇
  2005年   2340篇
  2004年   2293篇
  2003年   2187篇
  2002年   2137篇
  2001年   507篇
  2000年   413篇
  1999年   517篇
  1998年   606篇
  1997年   464篇
  1996年   413篇
  1995年   393篇
  1994年   356篇
  1993年   345篇
  1992年   389篇
  1991年   328篇
  1990年   274篇
  1989年   277篇
  1988年   275篇
  1987年   253篇
  1986年   235篇
  1985年   306篇
  1984年   322篇
  1983年   259篇
  1982年   352篇
  1981年   277篇
  1980年   255篇
  1979年   190篇
  1978年   223篇
  1977年   209篇
  1976年   178篇
  1974年   188篇
  1973年   195篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Dual-specificity tyrosine-phosphorylated and regulated kinase 1A (Dyrk1A) is the human homologue of the Drosophila mnb (minibrain) gene. In Drosophila, mnb is involved in postembryonic neurogenesis. In human, DYRK1A maps within the Down syndrome critical region of chromosome 21 and is overexpressed in Down syndrome embryonic brain. Despite its potential involvement in the neurobiological alterations observed in Down syndrome patients, the biological functions of the serine/threonine kinase DYRK1A have not been identified yet. Here, we report that DYRK1A overexpression potentiates nerve growth factor (NGF)-mediated PC12 neuronal differentiation by up-regulating the Ras/MAP kinase signaling pathway independently of its kinase activity. Furthermore, we show that DYRK1A prolongs the kinetics of ERK activation by interacting with Ras, B-Raf, and MEK1 to facilitate the formation of a Ras/B-Raf/MEK1 multiprotein complex. These data indicate that DYRK1A may play a critical role in Ras-dependent transducing signals that are required for promoting or maintaining neuronal differentiation and suggest that overexpression of DYRK1A may contribute to the neurological abnormalities observed in Down syndrome patients.  相似文献   
992.
RNases P and MRP are ribonucleoprotein complexes involved in tRNA and rRNA processing, respectively. The RNA subunits of these two enzymes are structurally related to each other and play an essential role in the enzymatic reaction. Both of the RNAs have a highly conserved helical region, P4, which is important in the catalytic reaction. We have used a bioinformatics approach based on conserved elements to computationally analyze available genomic sequences of eukaryotic organisms and have identified a large number of novel nuclear RNase P and MRP RNA genes. For MRP RNA for instance, this investigation increases the number of known sequences by a factor of three. We present secondary structure models of many of the predicted RNAs. Although all sequences are able to fold into the consensus secondary structure of P and MRP RNAs, a striking variation in size is observed, ranging from a Nosema locustae MRP RNA of 160 nt to much larger RNAs, e.g. a Plasmodium knowlesi P RNA of 696 nt. The P and MRP RNA genes appear in tandem in some protists, further emphasizing the close evolutionary relationship of these RNAs.  相似文献   
993.
Summary Vascular endothelial growth factor (VEGF) is an important angiogenic factor in the pituitary gland. The objective of this study was to unveil the VEGF subcellular localisation in different pituitary cell types and to evaluate changes in its expression at different time intervals after oestrogen stimulation. A relevant feature demonstrated was the identification of this cytokine in the nucleus and cytoplasm of lactotrophs, somatotrophs and gonadotrophs, as well as in follicle-stellate cells of male rats. Oestrogen treatment increased the number of VEGF immunopositive cells and its expression detected differentially by western blot in both nucleus and cytoplasm of pituitary cells when compared to the control. At ultrastructural level VEGF appeared associated with nucleolus and euchromatin involving a possible internal autocrine loop. In lactotrophs, the predominant cell of the tumour, VEGF was immunodetected in RER, Golgi complex, and vesicular organelles, supporting further the association with an auto-paracrine effect exerted by VEGF. The nucleus/cytoplasm ratio of VEGF revealed a prevalent accumulation of VEGF in the cytoplasm. The presence of VEGF in the nucleus may probably be associated with a translocation to this cell compartment. This study demonstrated a cytoplasmic and nuclear immunolocalisation of VEGF in normal and tumoural adenohypophyseal cells. In the course of prolactinoma development, the oestrogen stimulated VEGF expression in tumoural cells, promoting a vascular adaptation which contributes to growth and progression of the tumour.  相似文献   
994.
Despite their clinical importance for skeletal growth and homeostasis, the actions of androgens on osteoblastic cells are not well understood. MC3T3-E1 cells, a nontransformed murine preosteoblastic cell line, that traverse the stages of osteoblastic differentiation within 30 days in vitro, were exposed to mibolerone (an androgen receptor (AR) agonist) or 5alpha-dihydroxytestosterone (DHT) from days 3 to 30 post-plating. Cells exposed to this hormonal regimen exhibited a significant increase in mineralization (calcium deposition) compared to vehicle-treated cells. Delaying treatment for 4-11 days (treatment still completed on day 30 post-plating) enhanced mineralization further. Within 2 days post-plating, AR protein increased 7.2-fold in androgen-treated cells and 2.5-fold in vehicle-treated cells. MC3T3-E1 cells transfected with an androgen- and glucocorticoid-responsive reporter construct on day 1 post-plating followed by a 2 day exposure to DHT, mibolerone, or dexamethasone (dex; a glucocorticoid receptor agonist) exhibited reporter gene activation only with dex treatment. In contrast, delaying transfection and treatment for at least 1 day resulted in comparable androgen- and dex-mediated reporter gene transactivation. Therefore, the ability of MC3T3-E1 cells to respond to androgens is dependent on the timing of androgen administration.  相似文献   
995.
996.
Non-viral vectors are promising vehicles for gene therapy but delivery of plasmid DNA to post-mitotic cells is challenging as nuclear entry is particularly inefficient. We have developed and evaluated a hybrid mRNA/DNA system designed to bypass the nuclear barrier to transfection and facilitate cytoplasmic gene expression. This system, based on co-delivery of mRNA(A64) encoding for T7 RNA polymerase (T7 RNAP) with a T7-driven plasmid, produced between 10- and 2200-fold higher gene expression in primary dorsal root ganglion neuronal (DRGN) cultures isolated from Sprague–Dawley rats compared to a cytomegalovirus (CMV)-driven plasmid, and 30-fold greater expression than the enhanced T7-based autogene plasmid pR011. Cell-free assays and in vitro transfections highlighted the versatility of this system with small quantities of T7 RNAP mRNA required to mediate expression at levels that were significantly greater than with the T7-driven plasmid alone or supplemented with T7 RNAP protein. We have also characterized a number of parameters, such as mRNA structure, intracellular stability and persistence of each nucleic acid component that represent important factors in determining the transfection efficiency of this hybrid expression system. The results from this study demonstrate that co-delivery of mRNA is a promising strategy to yield increased expression with plasmid DNA, and represents an important step towards improving the capability of non-viral vectors to mediate efficient gene transfer in cell types, such as in DRGN, where the nuclear membrane is a significant barrier to transfection.  相似文献   
997.
998.
Accurate multiple sequence alignments of proteins are very important to several areas of computational biology and provide an understanding of phylogenetic history of domain families, their identification and classification. This article presents a new algorithm, REFINER, that refines a multiple sequence alignment by iterative realignment of its individual sequences with the predetermined conserved core (block) model of a protein family. Realignment of each sequence can correct misalignments between a given sequence and the rest of the profile and at the same time preserves the family's overall block model. Large-scale benchmarking studies showed a noticeable improvement of alignment after refinement. This can be inferred from the increased alignment score and enhanced sensitivity for database searching using the sequence profiles derived from refined alignments compared with the original alignments. A standalone version of the program is available by ftp distribution (ftp://ftp.ncbi.nih.gov/pub/REFINER) and will be incorporated into the next release of the Cn3D structure/alignment viewer.  相似文献   
999.
We measured in vivo and in vitro nutrient-stimulated insulin secretion in late gestation fetal sheep to determine whether an intrinsic islet defect is responsible for decreased glucose-stimulated insulin secretion (GSIS) in response to chronic hypoglycemia. Control fetuses responded to both leucine and lysine infusions with increased arterial plasma insulin concentrations (average increase: 0.13 +/- 0.05 ng/ml leucine; 0.99 +/- 0.26 ng/ml lysine). In vivo lysine-stimulated insulin secretion was decreased by chronic (0.37 +/- 0.18 ng/ml) and acute (0.27 +/- 0.19 ng/ml) hypoglycemia. Leucine did not stimulate insulin secretion following acute hypoglycemia but was preserved with chronic hypoglycemia (0.12 +/- 0.09 ng/ml). Isolated pancreatic islets from chronically hypoglycemic fetuses had normal insulin and DNA content but decreased fractional insulin release when stimulated with glucose, leucine, arginine, or lysine. Isolated islets from control fetuses responded to all nutrients. Therefore, chronic late gestation hypoglycemia causes defective in vitro nutrient-regulated insulin secretion that is at least partly responsible for diminished in vivo GSIS. Chronic hypoglycemia is a feature of human intrauterine growth restriction (IUGR) and might lead to an islet defect that is responsible for the decreased insulin secretion patterns seen in human IUGR fetuses and low-birth-weight human infants.  相似文献   
1000.
Weight regain after weight loss is the most significant impediment to long-term weight reduction. We have developed a rodent paradigm that models the process of regain after weight loss, and we have employed both prospective and cross-sectional analyses to characterize the compensatory adaptations to weight reduction that may contribute to the propensity to regain lost weight. Obese rats were fed an energy-restricted (50-60% kcal) low-fat diet that reduced body weight by 14%. This reduced weight was maintained for up to 16 wk with limited provisions of the low-fat diet. Intake restriction was then removed, and the rats were followed for 56 days as they relapsed to the obese state. Prolonged weight reduction was accompanied by 1) a persistent energy gap resulting from an increased drive to eat and a reduced expenditure of energy, 2) a higher caloric efficiency of regain that may be linked with suppressed lipid utilization early in the relapse process, 3) preferential lipid accumulation in adipose tissue accompanied by adipocyte hyperplasia, and 4) humoral adiposity signals that underestimate the level of peripheral adiposity and likely influence the neural pathways controlling energy balance. Taken together, long-term weight reduction in this rodent paradigm is accompanied by a number of interrelated compensatory adjustments in the periphery that work together to promote rapid and efficient weight regain. These metabolic adjustments to weight reduction are discussed in the context of a homeostatic feedback system that controls body weight.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号