首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   739篇
  免费   130篇
  2021年   8篇
  2017年   6篇
  2016年   7篇
  2015年   17篇
  2014年   22篇
  2013年   25篇
  2012年   27篇
  2011年   32篇
  2010年   25篇
  2009年   20篇
  2008年   27篇
  2007年   17篇
  2006年   32篇
  2005年   30篇
  2004年   24篇
  2003年   28篇
  2002年   27篇
  2001年   33篇
  2000年   31篇
  1999年   19篇
  1998年   20篇
  1997年   17篇
  1996年   14篇
  1995年   10篇
  1994年   14篇
  1992年   15篇
  1991年   27篇
  1990年   19篇
  1989年   21篇
  1988年   16篇
  1987年   15篇
  1986年   8篇
  1985年   15篇
  1984年   9篇
  1983年   7篇
  1982年   14篇
  1981年   7篇
  1980年   7篇
  1979年   9篇
  1978年   10篇
  1977年   6篇
  1976年   9篇
  1975年   9篇
  1974年   6篇
  1973年   11篇
  1972年   10篇
  1971年   8篇
  1970年   7篇
  1969年   8篇
  1934年   5篇
排序方式: 共有869条查询结果,搜索用时 15 毫秒
11.
Benzo(a)pyrene (BP) was dissolved in dietary fat and fed in a single dose to killifish (Fundulus heteroclitus). Fluorescence microscopic examinations of small intestinal content and frozen sections of whole small intestine revealed that during fat digestion BP was codispersed in liquid crystalline product phases produced during lipolysis (1979. Patton, J. S., and M. C. Carey, Science. 204: 145-148) and then coabsorbed with dietary lipid followed by its reappearance in intracellular fat droplets. During the time that the absorbed fat remained in the enterocytes, BP fluorescence was initially concentrated in the intracellular fat droplets and then spread throughout the cytosol of the enterocytes. Tissue analyses showed that BP was rapidly metabolized in the intestine and transported to the gallbladder. These studies show that separation of a dissolved hydrophobic carcinogen from dietary fat occurs primarily after the fat has been digested, dispersed, absorbed, and reassembled in the enterocyte. The inability of the enterocyte to discriminate between dietary fat and dissolved carcinogenic compounds may be a partial explanation of the observed link between high fat diets and the incidence of some cancers. In vertebrates, the intestine and not the liver, appears to be the major site of metabolism of dietary polycyclic aromatic hydrocarbons (PAHs).  相似文献   
12.
The present study demonstrates that inactivation of exogenous 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (alkylacetyl-GPC; platelet-activating factor) by human platelets is mediated by the sequential action of two enzymes, 1) a Ca2+-independent acetylhydrolase recovered in the cytosolic fraction of platelets that deacylates alkylacetyl-GPC forming alkyllyso-GPC and 2) a CoA-independent, N-ethylmaleimide-sensitive transacylase associated with platelet membranes that incorporates a long-chain fatty acid into alkyllyso-GPC to produce alkylacyl-GPC. Separation of platelet phospholipids and subsequent resolution into individual molecular species by high-performance liquid chromatography revealed that the newly formed alkylacyl-GPC was exclusively alkylarachidonoyl-GPC and that the arachidonoyl group for acylation of alkyllyso-GPC was provided by phosphatidylcholine. We conclude that the previously described platelet arachidonoyl transacylase (Kramer, R.M., and Deykin, D. (1983) J. Biol. Chem. 258, 13806-13811) may play an important role in the metabolism of platelet-activating factor.  相似文献   
13.
14.
Lipid-containing deposits within the swim bladders of Coryphaenoides acrolepis and Antimora rostrata were investigated. Lipid analysis of this material, which was quite uniform from the two species, yielded the following data: neutral lipids, 36.0-41.7%; phospholipids, 53.6-56.7%; and glycolipids, 4.3-8.9%. Cholesterol (mainly in the free form) constituted 60.4%-77.8% of the neutral lipids. Sphingomyelin and phosphatidylcholine were the principal phospholipids, with sphingomyelin highest in the material from C. acrolepis and phosphatidylcholine predominant in that from A. rostrata. The overall pattern of lipids shows a resemblance to that of plasma membrane, particularly in the relatively high levels of free cholesterol, sphingomyelin, and phosphatidylserine. The lipid-to-protein ratio of the material is approximately 1.5-2 to 1. The lipids of the fine inner lining (tunica interna) of the swim bladder from a shallow water fish, the kelp bass (Paralabrax clathratus), had essentially the same composition as the much more abundant swim bladder material from the deep ocean fishes.  相似文献   
15.
Methanogenesis and microbial lipid synthesis in anoxic salt marsh sediments   总被引:1,自引:0,他引:1  
In anoxic salt marsh sediments of Sapelo Island, GA, USA, the vertical distribution of CH4 production was measured in the upper 20 cm of surface sediments in ten locations. In one section of high marsh sediments, the concentration and oxidation of acetate in sediment porewaters and the rate and amount of14C acetate and14CO2 incorporation into cellular lipids of the microbial population were investigated. CH4 production rates ranged from <1 to 493 nM CH4 gram sediment−1 day−1 from intact subcores incubated under nitrogen. Replacement with H2 stimulated the rate of methane release up to nine fold relative to N2 incubations. Rates of lipid synthesis from CO2 averaged 39.2 ×10−2nanomoles lipid carbon cm3 sediment−1 hr−1, suggesting that CO2 may be an important carbon precursor for microbial membrane synthesis in marsh sediments under anoxic conditions. Qualitative measurements of lipid synthesis rates from acetate were found to average 8.7 × 10−2 nanomoles. Phospholipids were the dominant lipids synthesized by both substrates in sediment cores, accounting for an average of 76.6% of all lipid radioactivity. Small amounts of ether lipids indicative of methanogenic bacteria were observed in cores incubated for 7 days, with similar rates of synthesis for both CO2 and acetate. The low rate of ether lipid synthesis suggests that either methanogen lipid biosynthesis is very slow or that methanogens represent a small component of total microbial lipid synthesis in anoxic sediments. present address: The University of Maryland,, Chesapeake Biological Laboratory, Box 38, Solomons, MD 20688, USA  相似文献   
16.
Inhibition of lipolysis by hydrocarbons and fatty alcohols   总被引:2,自引:0,他引:2  
The hydrolysis of long-chain triglyceride by pancreatic lipase (EC 3.1.1.3) is inhibited by hydrophobic solutes that are dissolved in the fat. Solutes tested included n-alkanes (C10-C16), aromatic and chlorinated aromatic hydrocarbons (including a PCB and DDT), n-alcohols (C10-C16), and cholesterol. Except for cholesterol, which stimulated lipolysis at low concentrations, all compounds produced roughly similar inhibition curves that followed the pattern of a typical Langmuir adsorption isotherm (Mattson, F. H., R. A. Volpenhein, and L. Benjamin, 1970. J. Biol. Chem. 245: 5335-5340). According to this interpretation, hydrophobic solutes dissolved within fat droplets partition between the interior oil phase and the surface monolayer where lipolysis occurs. Although the aromatic and chlorinated aromatic hydrocarbons were approximately 25% more inhibitory than the long-chain aliphatic hydrocarbons, as a single class, hydrocarbons were 7-10 times weaker inhibitors of lipolysis than fatty alcohols. In contrast to the alcohols whose inhibitory action may involve several mechanisms, the hydrocarbons behaved like simple dilution inhibitors; i.e., at 50% inhibition the mass ratio of hexadecane to triglyceride was 0.42. The lack of a chain length effect indicates that the hydrocarbons are not adsorbed at the interface but interdigitate the triglyceride molecules and align parallel to the lipid acyl chains. Inhibition by hydrophobic solutes was not reversed by the presence of 4 mM taurodeoxycholate and pancreatic procolipase or colipase.  相似文献   
17.
Temperature-sensitive mutants of simian rotavirus SA11 were previously developed and organized into 10 of a possible 11 recombination groups on the basis of genome reassortment studies. Two of these mutants, tsF and tsG, map to genes encoding VP2 (segment 2) and VP6 (segment 6), respectively. To gain insight into the role of these proteins in genome replication, MA104 cells were infected with tsF or tsG and then maintained at permissive temperature (31 degrees C) until 9 h postinfection, when some cells were shifted to nonpermissive temperature (39 degrees C). Subviral particles (SVPs) were recovered from the infected cells at 10.5 and 12 h postinfection and assayed for associated replicase activity in a cell-free system shown previously to support rotavirus genome replication in vitro. The results showed that the level of replicase activity associated with tsF SVPs from cells shifted to nonpermissive temperature was ca. 20-fold less than that associated with tsF SVPs from cells maintained at permissive temperature. In contrast, the level of replicase activity associated with tsG SVPs from cells maintained at nonpermissive temperature was only slightly less (twofold or less) than that associated with tsG SVPs from cells maintained at permissive temperature. Analysis of the structure of replicase particles from tsG-infected cells shifted to nonpermissive temperature showed that they were similar in size and density to virion-derived core particles and contained the major core protein VP2 but lacked the major inner shell protein VP6. Taken together, these data indicate that VP2, but not VP6, is an essential component of enzymatically active replicase particles.  相似文献   
18.
19.
We report the cloning of the gene encoding the 1-cyclohexenylcarbonyl coenzyme A reductase (ChcA) of Streptomyces collinus, an enzyme putatively involved in the final reduction step in the formation of the cyclohexyl moiety of ansatrienin from shikimic acid. The cloned gene, with a proposed designation of chcA, encodes an 843-bp open reading frame which predicts a primary translation product of 280 amino acids and a calculated molecular mass of 29.7 kDa. Highly significant sequence similiarity extending along almost the entire length of the protein was observed with members of the short-chain alcohol dehydrogenase superfamily. The S. collinus chcA gene was overexpressed in Escherichia coli by using a bacteriophage T7 transient expression system, and a protein with a specific ChcA activity was detected. The E. coli-produced ChcA protein was purified and shown to have similar steady-state kinetics and electrophoretic mobility on sodium dodecyl sulfate-polyacrylamide gels as the enoyl-coenzyme A reductase protein prepared from S. collinus. The enzyme demonstrated the ability to catalyze, in vitro, three of the reductive steps involved in the formation of cyclohexanecarboxylic acid. An S. collinus chcA mutant, constructed by deletion of a genomic region comprising the 5' end of chcA, lost the ChcA activity and the ability to synthesize either cyclohexanecarboxylic acid or ansatrienin. These results suggest that chcA encodes the ChcA that is involved in catalyzing multiple reductive steps in the pathway that provides the cyclohexanecarboxylic acid from shikimic acid.  相似文献   
20.
O Gozani  J G Patton    R Reed 《The EMBO journal》1994,13(14):3356-3367
We have isolated and determined the protein composition of the spliceosomal complex C. The pre-mRNA in this complex has undergone catalytic step I, but not step II, of the splicing reaction. We show that a novel set of 14 spliceosome-associated proteins (SAPs) and the essential splicing factor PSF are specifically associated with the C complex, implicating these proteins in catalytic step II. Significantly, immunodepletion and biochemical complementation studies demonstrate directly that PSF is essential for catalytic step II. Purified PSF is known to UV crosslink to pyrimidine tracts, and our data show that PSF UV crosslinks to pre-mRNA in purified C complex. Thus, PSF may replace the 3' splice site binding factor U2AF65 which is destabilized during spliceosome assembly. Finally, we show that SAPs 60 and 90, which are present in both the B and C complexes, are specifically associated with U4 and U6 snRNPs, and thus may have important roles in the functioning of these snRNPs during the splicing reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号