首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1755篇
  免费   132篇
  1887篇
  2023年   5篇
  2022年   12篇
  2021年   27篇
  2020年   22篇
  2019年   24篇
  2018年   23篇
  2017年   29篇
  2016年   36篇
  2015年   86篇
  2014年   72篇
  2013年   140篇
  2012年   178篇
  2011年   147篇
  2010年   97篇
  2009年   81篇
  2008年   105篇
  2007年   114篇
  2006年   106篇
  2005年   102篇
  2004年   89篇
  2003年   81篇
  2002年   78篇
  2001年   7篇
  2000年   10篇
  1999年   18篇
  1998年   24篇
  1997年   19篇
  1996年   14篇
  1995年   17篇
  1994年   12篇
  1993年   15篇
  1992年   13篇
  1991年   9篇
  1990年   10篇
  1989年   5篇
  1988年   8篇
  1987年   4篇
  1986年   6篇
  1985年   8篇
  1984年   5篇
  1983年   4篇
  1982年   2篇
  1981年   7篇
  1980年   3篇
  1979年   5篇
  1978年   2篇
  1976年   2篇
  1975年   3篇
  1971年   1篇
排序方式: 共有1887条查询结果,搜索用时 0 毫秒
91.
92.
The whole cell biological conversion of naphthalene to (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene by the E. coli JM109(pPS1778) recombinant strain carrying the naphthalene dioxygenase and regulatory genes cloned from Pseudomonas fluorescens N3 in micellar systems has been investigated using biochemical and chemico-physical techniques. Reverse and direct micellar systems have been tested. Non-ionic surfactants (Tween and Triton X series) were found not to inhibit either the growth of the bacteria and the expression of the hydroxylating dioxygenase enzyme in such systems and were utilized in order to speed up the naphthalene conversion by increasing its solubility and also its bioavailability. The phase behavior of the direct micellar system was characterized through light scattering and other chemico-physical techniques. Further addition of isopropyl-palmitate 1–2% v/v to the micellar systems resulted in an increase of the apparent substrate concentration in solution and particularly its bioavailability thus allowing faster catalytic conversions resulting in an increase in productivity for the process. Since the cis-dihydrodiols are acquiring considerable potential as chiral pool synthons in asymmetric synthesis for a variety of industrial processes, possible applications for efficient small and large-scale production of such compounds are discussed.  相似文献   
93.
The antioxidant properties of galloyl quinic derivatives isolated from Pistacia lentiscus L. leaves have been investigated by means of Electron Paramagnetic Resonance spectroscopy (EPR) and UV-Vis spectrophotometry. Antioxidant properties have been also estimated using the biologically relevant LDL test. The scavenger activities of gallic acid, 5- O -galloyl, 3,5- O -digalloyl, 3,4,5- O -trigalloyl quinic acid derivatives, have been estimated against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, superoxide ( O 2 - ) radical, and hydroxyl (OH) radical. On the whole, the scavenger activity raised as the number of galloyl groups on the quinic acid skeleton increased. The half-inhibition concentrations (IC 50 ) of di- and tri-galloyl derivatives did not exceed 30 μM for all the tested free radicals. All the tested metabolites strongly reduced the oxidation of low-density lipoproteins (LDL), following a trend similar to that observed for the scavenger ability against OH radical.  相似文献   
94.
95.

Background

Dual/mixed-tropic HIV-1 strains are predominant in a significant proportion of patients, though little information is available regarding their replication-capacity and susceptibility against CCR5-antagonists in-vitro. The aim of the study was to analyze the replication-capacity and susceptibility to maraviroc of HIV-1 clinical isolates with different tropism characteristics in primary monocyte-derived-macrophages (MDM), peripheral-blood-mononuclear-cells (PBMC), and CD4+T-lymphocytes.

Methods

Twenty-three HIV-1 isolates were phenotipically and genotipically characterized as R5, X4 or dual (discriminated as R5+/X4, R5/X4, R5/X4+). Phenotypic-tropism was evaluated by multiple-cycles-assay on U87MG-CD4+-CCR5+−/CXCR4+-expressing cells. Genotypic-tropism prediction was obtained using Geno2Pheno-algorithm (false-positive-rate [FPR] = 10%). Replication-capacity and susceptibility to maraviroc were investigated in human-primary MDM, PBMC and CD4+T-cells. AMD3100 was used as CXCR4-inhibitor. Infectivity of R5/Dual/X4-viruses in presence/absence of maraviroc was assessed also by total HIV-DNA, quantified by real-time polymerase-chain-reaction.

Results

Among 23 HIV-1 clinical isolates, phenotypic-tropism-assay distinguished 4, 17 and 2 viruses with R5-tropic, dual/mixed-, and X4-tropic characteristics, respectively. Overall, viruses defined as R5+/X4-tropic were found with the highest prevalence (10/23, 43.5%). The majority of isolates efficiently replicated in both PBMC and CD4+T-cells, regardless of their tropism, while MDM mainly sustained replication of R5- or R5+/X4-tropic isolates; strong correlation between viral-replication and genotypic-FPR-values was observed in MDM (rho = 0.710;p-value = 1.4e-4). In all primary cells, maraviroc inhibited viral-replication of isolates not only with pure R5- but also with dual/mixed tropism (mainly R5+/X4 and, to a lesser extent R5/X4 and R5/X4+). Finally, no main differences by comparing the total HIV-DNA with the p24-production in presence/absence of maraviroc were found.

Conclusions

Maraviroc is effective in-vitro against viruses with dual-characteristics in both MDM and lymphocytes, despite the potential X4-mediated escape. This suggests that the concept of HIV-entry through one of the two coreceptors “separately” may require revision, and that the use of CCR5-antagonists in patients with dual/mixed-tropic viruses may be a therapeutic-option that deserves further investigations in different clinical settings.  相似文献   
96.
The contribution that oxidative damage to DNA and/or RNA makes to the aging process remains undefined. In this study, we used the hMTH1‐Tg mouse model to investigate how oxidative damage to nucleic acids affects aging. hMTH1‐Tg mice express high levels of the hMTH1 hydrolase that degrades 8‐oxodGTP and 8‐oxoGTP and excludes 8‐oxoguanine from both DNA and RNA. Compared to wild‐type animals, hMTH1‐overexpressing mice have significantly lower steady‐state levels of 8‐oxoguanine in both nuclear and mitochondrial DNA of several organs, including the brain. hMTH1 overexpression prevents the age‐dependent accumulation of DNA 8‐oxoguanine that occurs in wild‐type mice. These lower levels of oxidized guanines are associated with increased longevity and hMTH1‐Tg animals live significantly longer than their wild‐type littermates. Neither lipid oxidation nor overall antioxidant status is significantly affected by hMTH1 overexpression. At the cellular level, neurospheres derived from adult hMTH1‐Tg neural progenitor cells display increased proliferative capacity and primary fibroblasts from hMTH1‐Tg embryos do not undergo overt senescence in vitro. The significantly lower levels of oxidized DNA/RNA in transgenic animals are associated with behavioral changes. These mice show reduced anxiety and enhanced investigation of environmental and social cues. Longevity conferred by overexpression of a single nucleotide hydrolase in hMTH1‐Tg animals is an example of lifespan extension associated with healthy aging. It provides a link between aging and oxidative damage to nucleic acids.  相似文献   
97.
Yang YH  Zhou H  Binmadi NO  Proia P  Basile JR 《PloS one》2011,6(10):e25826

Background

The semaphorins and their receptors, the plexins, are proteins related to c-Met and the scatter factors that have been implicated in an expanding signal transduction network involving co-receptors, RhoA and Ras activation and deactivation, and phosphorylation events. Our previous work has demonstrated that Semaphorin 4D (Sema4D) acts through its receptor, Plexin-B1, on endothelial cells to promote angiogenesis in a RhoA and Akt-dependent manner. Since NF-κB has been linked to promotion of angiogenesis and can be activated by Akt in some contexts, we wanted to examine NF-κB in Sema4D treated cells to determine if there was biological significance for the pro-angiogenic phenotype observed in endothelium.

Methods/Principal Findings

Using RNA interference techniques, gel shifts and NF-κB reporter assays, we demonstrated NF-κB translocation to the nucleus in Sema4D treated endothelial cells occurring downstream of Plexin-B1. This response was necessary for endothelial cell migration and capillary tube formation and protected endothelial cells against apoptosis as well, but had no effect on cell proliferation. We dissected Plexin-B1 signaling with chimeric receptor constructs and discovered that the ability to activate NF-κB was dependent upon Plexin-B1 acting through Rho and Akt, but did not involve its role as a Ras inhibitor. Indeed, inhibition of Rho by C3 toxin and Akt by LY294002 blocked Sema4D-mediated endothelial cell migration and tubulogenesis. We also observed that Sema4D treatment of endothelial cells induced production of the NF-κB downstream target IL-8, a response necessary for angiogenesis. Finally, we could show through co-immunofluorescence for p65 and CD31 that Sema4D produced by tumor xenografts in nude mice activated NF-κB in vessels of the tumor stroma.

Conclusion/Significance

These findings provide evidence that Sema4D/Plexin-B1-mediated NF-κB activation and IL-8 production is critical in the generation a pro-angiogenic phenotype in endothelial cells and suggests a new therapeutic target for the anti-angiogenic treatment of some cancers.  相似文献   
98.
Human CD105 antigen, a type I integral membrane glycoprotein, is expressed as homodimer and oligomer by human endothelial cells, and forms a heteromeric association with TGF-β signaling receptors I and II. Several mutations of CD105 antigen gene are involved in a vascular disorder known as hereditary hemorrhagic telangiectasia type 1. The proposed mechanism by which CD105 is involved in said disorder is haploinsufficiency. We report expression and characterization of human CD105 antigen extracellular domain in yeast Saccharomyces cerevisiae. Different strategies to influence the release of heterologous proteins in the medium, such as alteration of cell wall integrity or coexpression of protein disulfide isomerase, were addressed. Purified extracellular domain of human CD105 antigen retains capacity to bind human TGF-β receptor II in vitro.  相似文献   
99.
The K/BxN serum transfer model of arthritis is critically dependent on FcγR signaling events mediated by spleen tyrosine kinase (Syk). However, the specific cell types in which this signaling is required are not known. We report that deletion of Syk in neutrophils, achieved using syk(f/f) MRP8-cre(+) mice, blocks disease development in serum transfer arthritis. The syk(f/f) MRP8-cre(+) mice display absent joint disease and reduced deposition of pathogenic anti-glucose-6-phosphate isomerase Abs in the joint (with a reciprocal accumulation of these Abs in the peripheral circulation). Additionally, syk(f/f) MRP8-cre(+) mice manifest poor edema formation within 3 h after formation of cutaneous immune complexes (Arthus reaction). Together, this suggests that neutrophil-dependent recognition of immune complexes contributes significantly to changes in vascular permeability during the early phases of immune complex disease. Using mixed chimeric mice, containing both wild-type and syk(f/f) MRP8-cre(+) neutrophils, we find no impairment in recruitment of Syk-deficient neutrophils to the inflamed joint, but they fail to become primed, demonstrating lower cytokine production after removal from the joint. They also display an increased apoptotic rate compared with wild-type cells in the same joint. Mast cell-deficient c-kit(sh/sh) mice developed robust arthritis after serum transfer whereas c-kit(W/Wv) mice did not, suggesting that previous conclusions concerning the central role of mast cells in this model may need to be revised. Basophil-deficient mice also responded normally to K/BxN serum transfer. These results demonstrate that Syk-dependent signaling in neutrophils alone is critically required for arthritis development in the serum transfer model.  相似文献   
100.
The innate immune system is present throughout the female reproductive tract and functions in synchrony with the adaptive immune system to provide protection in a way that enhances the chances for fetal survival, while protecting against potential pathogens. Recent data show that activation of Toll-like receptor (TLR)2 and 4 by low-molecular weight hyaluronic acid (LMW-HA) in the epidermis induces secretion of the antimicrobial peptide β-defensin 2. In the present work, we show that LMW-HA induces vaginal epithelial cells to release different antimicrobial peptides, via activation of TLR2 and TLR4. Further, we found that LMW-HA favors repair of vaginal epithelial injury, involving TLR2 and TLR4, and independently from its classical receptor CD44. This wound-healing activity of LMW-HA is dependent from an Akt/phosphatidylinositol 3 kinase pathway. Therefore, these findings suggest that the vaginal epithelium is more than a simple physical barrier to protect against invading pathogens: on the contrary, this surface acts as efficient player of innate host defense, which may modulate its antimicrobial properties and injury restitution activity, following LMW-HA stimulation; this activity may furnish an additional protective activity to this body compartment, highly and constantly exposed to microbiota, ameliorating the self-defense of the vaginal epithelium in both basal and pathological conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号