首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1776篇
  免费   132篇
  1908篇
  2023年   6篇
  2022年   12篇
  2021年   27篇
  2020年   22篇
  2019年   25篇
  2018年   24篇
  2017年   30篇
  2016年   36篇
  2015年   87篇
  2014年   74篇
  2013年   140篇
  2012年   178篇
  2011年   148篇
  2010年   97篇
  2009年   81篇
  2008年   107篇
  2007年   118篇
  2006年   108篇
  2005年   101篇
  2004年   89篇
  2003年   82篇
  2002年   79篇
  2001年   7篇
  2000年   11篇
  1999年   19篇
  1998年   24篇
  1997年   20篇
  1996年   14篇
  1995年   17篇
  1994年   13篇
  1993年   15篇
  1992年   12篇
  1991年   9篇
  1990年   10篇
  1989年   5篇
  1988年   9篇
  1987年   4篇
  1986年   5篇
  1985年   8篇
  1984年   5篇
  1983年   4篇
  1982年   2篇
  1981年   7篇
  1980年   3篇
  1979年   6篇
  1978年   2篇
  1976年   2篇
  1975年   3篇
  1971年   1篇
排序方式: 共有1908条查询结果,搜索用时 0 毫秒
971.

Background

Human outbreaks of Ebola virus (EBOV) are a serious human health concern in Central Africa. Great apes (gorillas/chimpanzees) are an important source of EBOV transmission to humans due to increased hunting of wildlife including the ‘bush-meat’ trade. Cytomegalovirus (CMV) is an highly immunogenic virus that has shown recent utility as a vaccine platform. CMV-based vaccines also have the unique potential to re-infect and disseminate through target populations regardless of prior CMV immunity, which may be ideal for achieving high vaccine coverage in inaccessible populations such as great apes.

Methodology/Principal Findings

We hypothesize that a vaccine strategy using CMV-based vectors expressing EBOV antigens may be ideally suited for use in inaccessible wildlife populations. To establish a ‘proof-of-concept’ for CMV-based vaccines against EBOV, we constructed a mouse CMV (MCMV) vector expressing a CD8+ T cell epitope from the nucleoprotein (NP) of Zaire ebolavirus (ZEBOV) (MCMV/ZEBOV-NPCTL). MCMV/ZEBOV-NPCTL induced high levels of long-lasting (>8 months) CD8+ T cells against ZEBOV NP in mice. Importantly, all vaccinated animals were protected against lethal ZEBOV challenge. Low levels of anti-ZEBOV antibodies were only sporadically detected in vaccinated animals prior to ZEBOV challenge suggesting a role, at least in part, for T cells in protection.

Conclusions/Significance

This study demonstrates the ability of a CMV-based vaccine approach to protect against an highly virulent human pathogen, and supports the potential for ‘disseminating’ CMV-based EBOV vaccines to prevent EBOV transmission in wildlife populations.  相似文献   
972.
973.
N-Methyl-D-aspartate (NMDA) receptors (NRs) are glutamate-gated channels critical for the functioning of the nervous system. They are assembled from two types of subunits, the essential GluN1 and at least one type of GluN2 (A, B, C, D) subunit. Nickel (Ni) modulates the NR current in a way dependent on the GluN2 subunit present. Besides voltage-dependent and voltage-independent inhibition, in GluN2B-containing channels Ni enhances channel activity. We have recently identified several domains of the channel involved in Ni interaction, but many aspects of this modulation remain elusive. The purpose of the present work is to investigate the role of calcium (Ca) in the effect of Ni on the NR current measured by voltage- and patch-clamp in RNA-injected Xenopus laevis oocytes or in transiently transfected mammalian HEK293 cells expressing GluN1/GluN2B recombinant receptors. In both expression systems, in the presence of a physiological concentration of Ca (1.8 mM), Ni increased the NR current with EC(50) in the μM range, but this potentiation was reduced by decreasing Ca concentration or when Ca was substituted with Ba. In injected oocytes, the effect of Ni in 0.3 mM external Ba was only inhibitory (IC(50) = 65 μM). Increasing the internal calcium buffering by EGTA and BAPTA application, as well as incubation with cytoskeleton perturbing agents, colchicine and cytochalasin-D, did not produce major modifications in the Ni effect. These observations indicate that Ni-mediated potentiation is not dependent on Ca influx and internal Ca concentration, but it is dependent on external Ca, which possibly interacts with the extracellular portion of the protein through a modulatory binding site.  相似文献   
974.
Cell migration is a physiological process that requires endocytic trafficking and polarization of adhesion molecules and receptor tyrosine kinases (RTKs) to the leading edge. Many growth factors are able to induce motility by binding to specific RTK on target cells. Among them, keratinocyte growth factor (KGF or FGF7) and fibroblast growth factor 10 (FGF10), members of the FGF family, are motogenic for keratinocytes, and exert their action by binding to the keratinocyte growth factor receptor (KGFR), a splicing variant of FGFR2, exclusively expressed on epithelial cells. Here we analyzed the possible role of cortactin, an F-actin binding protein which is tyrosine phosphorylated by Src and is involved in KGFR-mediated cell migration, in the KGFR endocytosis and polarization to the leading edge of migrating cells upon ligand-induced stimulation. Biochemical phosphorylation study revealed that both KGF and FGF10 were able to induce tyrosine phosphorylation of Src and in turn of cortactin, as demonstrated by using the specific pharmacological Src-inhibitor SU6656, although FGF10 effect was delayed with respect to that promoted by KGF. Immunofluorescence analysis demonstrated the polarized localization of KGFR upon ligand stimulation to the leading edge of migrating keratinocytes, process that was regulated by Src. Moreover, we showed that the colocalization of cortactin with KGFR at the plasma membrane protrusions and on early endosomes after KGF and FGF10 treatment was Src-dependent. Further, by using a RNA interference approach through microinjection, we showed that cortactin is required for KGFR endocytosis and that the clathrin-dependent internalization of the receptor is a critical event for its polarization. Finally, KGFR expression and polarization enhanced cell migration in a scratch assay. Our results indicate that both Src and cortactin play a key role in the KGFR endocytosis and polarization at the leading edge of migrating keratinocytes, supporting the crucial involvement of RTK trafficking in cell motility.  相似文献   
975.
Staphylococcus aureus, in spite of antibiotics, is still a major human pathogen causing a wide range of infections. The present study describes the new vaccine A170PG, a peptidoglycan-based vaccine. In a mouse model of infection, A170PG protects mice against a lethal dose of S. aureus. Protection lasts at least 40 weeks and correlates with increased survival and reduced colonization. Protection extends into drug-resistant (MRSA or VISA) and genetically diverse clinical strains. The vaccine is effective when administered - in a single dose and without adjuvant - by the intramuscular, intravenous or the aerosol routes and induces active as well as passive immunization. Of note, A170PG also displays therapeutic activity, eradicating staphylococci, even when infection is systemic. Sustained antibacterial activity and induction of a strong and rapid anti-inflammatory response are the mechanisms conferring therapeutic efficacy to A170PG.  相似文献   
976.

Background

In HIV-infected individuals, mechanisms underlying unsatisfactory immune recovery during effective combination antiretroviral therapy (cART) have yet to be fully understood. We investigated whether polymorphism of genes encoding immune-regulating molecules, such as killer immunoglobulin-like receptors (KIR) and their ligands class I human leukocyte antigen (HLA), could influence immunological response to cART.

Methods

KIR and HLA frequencies were analyzed in 154 HIV-infected and cART-treated patients with undetectable viral load divided into two groups: ‘immunological non responders’ (INR, N = 50, CD4+ T-cell count <200/mm3) and full responders (FR, N = 104, CD4+ T-cell count >350/mm3). Molecular KIR were typed using polymerase chain reaction-based genotyping. Comparisons were adjusted for baseline patient characteristics.

Results

The frequency of KIR2DL3 allele was significantly higher in FR than in INR (83.7% vs. 62%, P = 0.005). The functional compound genotype HLA-C1+/KIR2DL3+, even at multivariable analysis, when adjusted for nadir CD4+ T-cell count, was associated with reduced risk of INR status: odds ratio (95% Confidence Intervals) 0.34 (0.13−0.88), P = 0.03.

Conclusions

Reduced presence of the inhibitory KIR2DL3 genotype detected in INR might provoke an imbalance in NK function, possibly leading to increased immune activation, impaired killing of latently infected cells, and higher proviral burden. These factors would hinder full immune recovery during therapy.  相似文献   
977.
Spherical silica nanoparticles (SNP) have been synthesized and functionalized with anti-HER-2 scFv800E6 antibody by both localized histidine-tag recognition, leading to an oriented protein ligation, and glutaraldehyde cross-linking, exploiting a statistical reactivity of lysine amine groups in the primary sequence of the molecule. The targeting efficiency of nanocomplexes in comparison with free scFv was evaluated by flow cytometry using a HER-2 antigen-positive MCF-7 breast cancer cell line, exhibiting a 4-fold increase in scFv binding efficacy, close to the affinity of intact anti-HER-2 monoclonal antibody, which suggests the effectiveness of presenting multiple scFv molecules on nanoparticles in improving antigen recognition. Unexpectedly, the conjugation method did not affect the binding efficacy of scFv, suggesting a structural role of lysines in the scFv molecule. Confocal laser scanning microscopy confirmed the binding of nanocomplexes to HER-2 and also provided evidence of their localization at the cell surface.  相似文献   
978.
979.
980.
Collagen VI is a major extracellular matrix (ECM) protein with a critical role in maintaining skeletal muscle functional integrity. Mutations in COL6A1, COL6A2 and COL6A3 genes cause Ullrich Congenital Muscular Dystrophy (UCMD), Bethlem Myopathy, and Myosclerosis. Moreover, Col6a1(-/-) mice and collagen VI deficient zebrafish display a myopathic phenotype. Recently, two additional collagen VI chains were identified in humans, the α5 and α6 chains, however their distribution patterns and functions in human skeletal muscle have not been thoroughly investigated yet. By means of immunofluorescence analysis, the α6 chain was detected in the endomysium and perimysium, while the α5 chain labeling was restricted to the myotendinous junctions. In normal muscle cultures, the α6 chain was present in traces in the ECM, while the α5 chain was not detected. In the absence of ascorbic acid, the α6 chain was mainly accumulated into the cytoplasm of a sub-set of desmin negative cells, likely of interstitial origin, which can be considered myofibroblasts as they expressed α-smooth muscle actin. TGF-β1 treatment, a pro-fibrotic factor which induces trans-differentiation of fibroblasts into myofibroblasts, increased the α6 chain deposition in the extracellular matrix after addition of ascorbic acid. In order to define the involvement of the α6 chain in muscle fibrosis we studied biopsies of patients affected by Duchenne Muscular Dystrophy (DMD). We found that the α6 chain was dramatically up-regulated in fibrotic areas where, in contrast, the α5 chain was undetectable. Our results show a restricted and differential distribution of the novel α6 and α5 chains in skeletal muscle when compared to the widely distributed, homologous α3 chain, suggesting that these new chains may play specific roles in specialized ECM structures. While the α5 chain may have a specialized function in tissue areas subjected to tensile stress, the α6 chain appears implicated in ECM remodeling during muscle fibrosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号