首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   911篇
  免费   67篇
  978篇
  2023年   3篇
  2022年   8篇
  2021年   22篇
  2020年   10篇
  2019年   20篇
  2018年   24篇
  2017年   17篇
  2016年   19篇
  2015年   37篇
  2014年   40篇
  2013年   67篇
  2012年   81篇
  2011年   77篇
  2010年   42篇
  2009年   51篇
  2008年   62篇
  2007年   58篇
  2006年   44篇
  2005年   43篇
  2004年   46篇
  2003年   47篇
  2002年   42篇
  2001年   15篇
  2000年   11篇
  1999年   13篇
  1998年   8篇
  1997年   4篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   7篇
  1991年   6篇
  1990年   5篇
  1989年   5篇
  1988年   6篇
  1987年   3篇
  1986年   5篇
  1985年   2篇
  1984年   1篇
  1983年   5篇
  1982年   3篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
  1973年   1篇
排序方式: 共有978条查询结果,搜索用时 15 毫秒
11.
Recently, sodium ion batteries (SIBs) have been widely investigated as one of the most promising candidates for replacing lithium ion batteries (LIBs). For SIBs or LIBs, designing a stable and uniform solid electrolyte interphase (SEI) at the electrode–electrolyte interface is the key factor to provide high capacity, long‐term cycling, and high‐rate performance. In this paper, it is described how a remarkably enhanced SEI layer can be obtained on TiO2 nanotube (TiO2 NTs) arrays that allows for a strongly improved performance of sodium battery systems. Key is that a Li+ pre‐insertion in TiO2 NTs can condition the SEI for Na+ replacement. SIBs constructed with Li‐pre‐inserted NTs deliver an exceptional Na+ cycling stability (e.g., 99.9 ± 0.1% capacity retention during 250 cycles at a current rate of 50 mA g?1) and an excellent rate capability (e.g., 132 mA h g?1 at a current rate of 1 A g?1). The key factor in this outstanding performance is that Li‐pre‐insertion into TiO2 NTs leads not only to an enhanced electronic conductivity in the tubes, but also expands the anatase lattice for facilitated subsequent Na+ cycling.  相似文献   
12.
13.
Rapid evolution can influence the ecology of populations, communities, and ecosystems, but the importance of evolution for ecological dynamics remains unclear, largely because the contexts in which evolution is powerful are poorly resolved. Here, we carry out a large observational study to test hypotheses about context dependency of eco‐evolutionary patterns previously identified on the stick insect Timema cristinae. Experiments and observations conducted in 2011 and 2012 documented predator‐mediated negative effects of camouflage maladaptation (i.e., evolutionary dynamics) on: (a) T. cristinae abundance and, (b) species richness and abundance of other arthropods. Here we show that camouflage maladaptation does not correlate with T. cristinae abundance and, instead, is associated with increased abundance and species richness of cohabitating arthropods. We furthermore find that plants with high levels of Timema maladaptation tend to have higher foliar nitrogen, that is, higher nutritional value, and more positive mass‐abundance slopes in the coexisting arthropod communities. We propose explanations for the observed contrasting results, such as negative density‐ and frequency‐dependent selection, feedbacks between herbivore abundance and plant nutritional quality, and common effects of predation pressure on selection and prey abundance. Our results demonstrate the utility of observational studies to assess the context dependency of eco‐evolutionary dynamics patterns and provide testable hypotheses for future work.  相似文献   
14.
Maintaining active zone structure is crucial for synaptic function. In this issue of EMBO reports, NMNAT is shown to act as a chaperone that protects the active zone structural protein Bruchpilot from degradation.EMBO reports (2013) 14 1, 87–94 doi:10.1038/embor.2012.181Synapses perform several tasks independently from the cell body of the neuron, including synaptic vesicle recycling through endocytosis or local protein maturation and degradation. Failure to regulate protein function locally is detrimental to the nervous system as evidenced by neuronal dysfunctions that arise as a consequence of synaptic ageing. This relative synaptic autonomy comes with a need for mechanisms that ensure correct protein (re)folding, and there is accumulating evidence that key chap-erones have a central role in the regulation and maintenance of synaptic structural integrity and function [1]. Work by Grace Zhai''s group, published in this issue of EMBO reports, demonstrates a key role of the Drosophila nicotinamide mononucleotide adenylyltransferase (NMNAT) chaperone in the protection of active zone components against activity-induced degeneration (Fig 1; [2]).Open in a separate windowFigure 1Results reported by Zang and colleagues [2] reveal a specific role of nicotinamide mononucleotide adenylyltransferase (NMNAT) in preserving active zone structure against use-dependent decline. This protection is exerted by direct interaction with BRP and protection of this key structural protein against ubiquitination and subsequent degradation. BRP, Bruchpilot; Ub, ubiquitin.Active zones, the specialized sites for neurotransmitter release at presynaptic terminals, are characterized by a dense protein network called the cytomatrix at the active zone (CAZ). The protein machinery of the CAZ is responsible for efficient synaptic vesicle tethering, docking and fusion with the presynaptic membrane and, thus, for reliable signal transmission from the neuron to the postsynaptic cell. Clearly, proteins in the CAZ are tightly regulated, especially in response to external cues such as synaptic activity [3,4]. Yet, this particularly crowded protein environment might be favourable for the formation of non-functional—and sometimes toxic—protein aggregates. Chaperones that act at the synapse reduce the probability of crucial protein aggregation by preventing and reverting these inappropriate interactions, which happen as a result of environmental stress.One of these chaperones, the Drosophila neuroprotective NMNAT, was identified in a genetic screen for factors involved in synapse function [5]. Its chaperone activity was later confirmed by using in vitro and in vivo protein folding assays [6]. NMNAT null mutants show severe and early onset neurodegeneration, whereas neurodevelopment does not seem to be strongly affected. Interestingly, degeneration of photoreceptors lacking NMNAT can be significantly attenuated by limiting synaptic activity, either by rearing flies in the dark or by introducing the no receptor potential A (norpA) mutation that blocks phototransduction [5]. These results indicate that NMNAT protects adult neurons from activity-induced degeneration.In this issue of EMBO reports, Zang and colleagues report a role for NMNAT at the synapse. They observed that loss or reduced levels of NMNAT leads to a concomitant loss of several synaptic markers including cysteine-string protein (CSP), synaptotagmin and the active zone structural protein Bruchpilot (BRP). Remarkably, BRP was the only one of these proteins found to co-immunoprecipitate with NMNAT from brain lysates. Both proteins show approximately 50% co-localization at the neuromuscular junction when imaged by 3D-SIM super-resolution microscopy, suggesting that NMNAT might act directly as a chaperone for maintaining a functional BRP conformation.Consistent with a protective role of NMNAT against BRP degradation, RNA interference-mediated NMNAT knockdown leads to BRP ubiquitination, whereas this modification was not detected in control brain lysates. Given the involvement of the ubiquitin proteasome pathway in regulating synaptic development and function [1], the authors tested the effect of the proteasome inhibitor MG-132 on BRP ubiquitination. They observed an increased level of BRP ubiquitination in wild-type flies fed with this drug, suggesting a role for the proteasome in the clearance of ubiquitinated BRP. By contrast, overexpression of NMNAT reduces the level of BRP ubiquitination both in the absence and the presence of MG-132, providing further evidence for the protective role of this chaperone against ubiquitination of BRP (Fig 1).a key role of the […] nicotinamide mononucleotide adenylyltransferase (NMNAT) chaperone in the protection of active zone components against activity-induced degenerationBRP is a cytoskeletal-like protein that is an integral component of T-bars—electron-dense structures that project from the presynaptic membrane and around which synaptic vesicles cluster. In agreement with a protective role of NMNAT against BRP ubiquitination, reduced levels of this chaperone give rise to a marked decrease in T-bar size in an age-dependent manner (Fig 1). Active zones are known to show dynamic changes in response to synaptic activity, and NMNAT was previously reported to protect photoreceptors against activity-induced degeneration [5]. The authors thus tested the effect of minimizing photoreceptor activity on active zone structure by keeping flies in the dark or inhibiting phototransduction by means of the norpA mutation. Both manipulations largely reversed the effect of NMNAT knockdown on T-bar size. Absence of light exposure also significantly reduced the amount of BRP that co-immunoprecipitates with NMNAT, indicating that neuronal activity regulates NMNAT–BRP interaction. Further experiments are needed to examine whether there is a positive correlation between synaptic activity and BRP ubiquitination levels, and whether NMNAT can indeed keep T-bar structure intact by protecting BRP against this modification under conditions of high synaptic activity.Finally, the study shows that reduced NMNAT levels not only caused a loss of BRP from the synapse but also a specific mislocalization of this protein to the cell body, where it accumulates in clusters together with the remaining NMNAT protein. Under these conditions BRP co-immunoprecipitated with the stress-induced Hsp70, a chaperone classically used as a marker for protein aggregation. It is still unclear whether these BRP clusters form as a result of defective anterograde trafficking and/or of enhanced retrograde transport of BRP. In the absence of light stimulation T-bars are properly assembled in nmnat null photoreceptors, but at this stage a role of NMNAT in regulating the axonal transport of BRP under conditions of normal synaptic activity cannot be excluded. Noticeably, two independent recent reports show involvement of NMNAT in mitochondrial mobility [7,8].As BRP and NMNAT co-localize and interact with one another, the simplest model that accounts for all the observations by Zang et al is that NMNAT directly prevents activity-induced ubiquitination of BRP and subsequent degradation. Yet, as its name indicates, this chaperone is an essential enzyme in NAD synthesis. It was previously shown by the Bellen lab that mutant versions of NMNAT, impaired for NAD production, rescue photoreceptor degeneration caused by loss of NMNAT [5]. This strongly suggests that NAD production is not required for stabilization of BRP but this might need further scrutiny [9].…reduced levels of this chaperone [NMNAT] give rise to a marked decrease in T-bar sizeWhile providing further insights into the role of NMNAT at the active zone in Drosophila, the paper by Zang et al might also have important implications for neurodegeneration in mammals. When ectopically expressed in mice, Nmnat has a protective role against Wallerian degeneration, that is, synapse and axon degeneration that rapidly occurs distal from an axonal wound in wild-type animals. This process is significantly delayed in mice overexpressing a chimaeric protein consisting of the amino-terminal 70 residues of the ubiquitination factor E4B (Ube4b) fused through a linker to Nmnat1, known as the Wallerian degeneration slow (Wlds) protein. Conversely, mutations in the human NMNAT1 gene were characterized in several families with Leber congenital amaurosis—a severe, early-onset neurodegenerative disease of the retina [10,11,12,13]. As Wlds or Nmnat1 overexpression protects axons from degeneration in various disease models [9], Nmnat1 emerges as a promising candidate for developing protective strategies against axonal degeneration in peripheral neuropathies such as amyotrophic lateral sclerosis but also in glaucoma, AIDS and other diseases [9].  相似文献   
15.
16.
Twin studies have estimated the heritability of longevity to be approximately 20–30 %. Genome-wide association studies (GWAS) have revealed a large number of determinants of morbidity, but so far, no new polymorphisms have been discovered to be associated with longevity per se in GWAS. We aim to determine whether the genetic architecture of mortality can be explained by single nucleotide polymorphisms (SNPs) associated with common traits and diseases related to mortality. By extensive quality control of published GWAS we created a genetic score from 707 common SNPs associated with 125 diseases or risk factors related with overall mortality. We prospectively studied the association of the genetic score with: (1) time-to-death; (2) incidence of the first of nine major diseases (coronary heart disease, stroke, heart failure, diabetes, dementia, lung, breast, colon and prostate cancers) in two population-based cohorts of Dutch and Swedish individuals (N = 15,039; age range 47–99 years). During a median follow-up of 6.3 years (max 22.2 years), we observed 4,318 deaths and 2,132 incident disease events. The genetic score was significantly associated with time-to-death [hazard ratio (HR) per added risk allele = 1.003, P value = 0.006; HR 4th vs. 1st quartile = 1.103]. The association between the genetic score and incidence of major diseases was stronger (HR per added risk allele = 1.004, P value = 0.002; HR 4th vs. 1st quartile = 1.160). Associations were stronger for individuals dying at older ages. Our findings are compatible with the view of mortality as a complex and highly polygenetic trait, not easily explainable by common genetic variants related to diseases and physiological traits.  相似文献   
17.
18.
In a recent paper, Yukilevich (2012) showed that asymmetries between Drosophila species in the strength of premating isolation tend to match asymmetries in the costs of hybridization (inferred from asymmetries in the strength of postzygotic isolation and range sizes). The results provide novel evidence that the outcome of reinforcement can depend on the strength and frequency of selection against hybridization. Here, I reanalyze the data to demonstrate that another (unconsidered) factor, namely the quantitative degree of sympatry between species, also predictably affects reinforcement. Specifically, premating isolation is strongest at intermediate degrees of sympatry. This result complements, rather than challenges, those of Yukilevich (2012) . One possible explanation for this newly discovered pattern is that when the degree of sympatry is small, selection for avoidance of hybridization is rare, but when the degree of sympatry is large, homogenizing gene flow overcomes reinforcing selection. Thus, reinforcement may depend on the balance between selection and gene flow. However, the current work examined degree of sympatry, not gene flow itself. Thus, further data on gene flow levels in Drosophila is required to test this hypothesis, which emerged from the patterns reported here.  相似文献   
19.
Understanding how survival is affected by the environment is essential to gain insight into population dynamics and the evolution of life‐history traits as well as to identify environmental selection pressures. However, we still have little understanding of the relative effect of different environmental factors and their interactions on demographic traits and population dynamics. Here we used two long‐term, individual‐based datasets on Tawny Owl Strix aluco (1981–2010) and Ural Owl S. uralensis (1986–2010) to undertake capture‐mark‐recapture analysis of annual survival of adult females in response to three biologically meaningful environmental variables and their two‐way interactions. Despite the similar ecology of these two species, their survival was associated with different and uncorrelated environmental drivers. The main correlate of Tawny Owl survival was an inverse association with snow depth (winter severity). For Ural Owl, high food (vole) abundance improved survival during years with deep snow, but was less important during years with little snow. In addition, Ural Owl survival was strongly density‐dependent, whereas Tawny Owl survival was not. Our findings advise caution in extrapolating demographic inferences from one species to another, even when they are very closely related and ecologically similar. Analyses including only one or few potential environmental drivers of a species' survival may lead to incomplete conclusions because survival may be affected by several factors and their interactions.  相似文献   
20.
The mechanisms by which melanin‐based colour polymorphism can evolve and be maintained in wild populations are poorly known. Theory predicts that colour morphs have differential sensitivity to environmental conditions. Recently it has been proposed that colour polymorphism covaries genetically with intrinsic and behavioural properties. Plumage moult is a costly and crucial somatic maintenance function in birds. We used a long‐term data set consisting of 761 observations on 307 individuals captured between 1985 and 2010 to examine differences in partial flight feather moult between grey (pale) and brown (pheomelanic dark) colour morphs of the tawny owl. We find that the brown morph consistently moult more primary flight feathers than the grey morph whereas there is no clear difference between colour morphs in the moulting of secondary feathers. Contrary to expectations, the difference in the number of moulted flight feathers between the morphs was independent of environmental conditions, as quantified by the abundance of prey. We discuss the potential physiological and behavioural causes for and costs of the observed difference in maintenance functions between colour morphs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号