首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18038篇
  免费   1554篇
  国内免费   10篇
  2023年   76篇
  2022年   172篇
  2021年   396篇
  2020年   225篇
  2019年   279篇
  2018年   360篇
  2017年   311篇
  2016年   492篇
  2015年   829篇
  2014年   924篇
  2013年   1086篇
  2012年   1463篇
  2011年   1333篇
  2010年   891篇
  2009年   851篇
  2008年   1106篇
  2007年   1128篇
  2006年   997篇
  2005年   1042篇
  2004年   944篇
  2003年   867篇
  2002年   837篇
  2001年   159篇
  2000年   142篇
  1999年   200篇
  1998年   243篇
  1997年   166篇
  1996年   147篇
  1995年   118篇
  1994年   123篇
  1993年   126篇
  1992年   119篇
  1991年   94篇
  1990年   130篇
  1989年   107篇
  1988年   89篇
  1987年   92篇
  1986年   56篇
  1985年   82篇
  1984年   96篇
  1983年   61篇
  1982年   82篇
  1981年   67篇
  1980年   51篇
  1979年   49篇
  1978年   37篇
  1977年   36篇
  1976年   32篇
  1975年   20篇
  1974年   28篇
排序方式: 共有10000条查询结果,搜索用时 765 毫秒
991.
Insulin secretion is initiated by ionic events involving membrane depolarization and Ca(2+) entry, whereas exocytic SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins mediate exocytosis itself. In the present study, we characterize the interaction of the SNARE protein SNAP-25 (synaptosome-associated protein of 25 kDa) with the beta-cell voltage-dependent K(+) channel Kv2.1. Expression of Kv2.1, SNAP-25, and syntaxin 1A was detected in human islet lysates by Western blot, and coimmunoprecipitation studies showed that heterologously expressed SNAP-25 and syntaxin 1A associate with Kv2.1. SNAP-25 reduced currents from recombinant Kv2.1 channels by approximately 70% without affecting channel localization. This inhibitory effect could be partially alleviated by codialysis of a Kv2.1N-terminal peptide that can bind in vitro SNAP-25, but not the Kv2.1C-terminal peptide. Similarly, SNAP-25 blocked voltage-dependent outward K(+) currents from rat beta-cells by approximately 40%, an effect that was completely reversed by codialysis of the Kv2.1N fragment. Finally, SNAP-25 had no effect on outward K(+) currents in beta-cells where Kv2.1 channels had been functionally knocked out using a dominant-negative approach, indicating that the interaction is specific to Kv2.1 channels as compared with other beta-cell Kv channels. This study demonstrates that SNAP-25 can regulate Kv2.1 through an interaction at the channel N terminus and supports the hypothesis that SNARE proteins modulate secretion through their involvement in regulation of membrane ion channels in addition to exocytic membrane fusion.  相似文献   
992.
993.
The stimulatory effect of VIP on intracellular calcium concentration ([Ca(2+)](i)) has been investigated in Chinese hamster ovary cells stably transfected with the reporter gene aequorin, and expressing human VPAC(1), VPAC(2), chimeric VPAC(1)/VPAC(2), or mutated receptors. The VIP-induced [Ca(2+)](i) increase was linearly correlated with receptor density and was higher in cells expressing VPAC(1) receptors than in cells expressing a similar VPAC(2) receptor density. The study was performed to establish the receptor sequence responsible for that difference. VPAC(1)/VPAC(2) chimeric receptors were first used for a broad positioning: those having the third intracellular loop (IC(3)) of the VPAC(1) or of the VPAC(2) receptor behaved, in that respect, phenotypically like VPAC(1) and VPAC(2) receptor, respectively. Replacement in the VPAC(2) receptor of the sequence 315-318 (VGGN) within the IC(3) by its VPAC(1) receptor counterpart 328-331 (IRKS) and the introduction of VGGN in state of IRKS in VPAC(1) was sufficient to mimic the VPAC(1) and VPAC(2) receptor characteristics, respectively. Thus, a small sequence in the IC(3) of the VPAC(1) receptor, probably through interaction with G(alphai) and G(alphaq) proteins, is responsible for the efficient agonist-stimulated [Ca(2+)](i) increase.  相似文献   
994.
995.
Cellular localisation of a water-soluble fullerene derivative   总被引:6,自引:0,他引:6  
Fullerenes are a new class of compounds with potential uses in biology and medicine and many insights were made in the knowledge of their interaction with various biological systems. However, their interaction with organised living systems as well as the site of their potential action remains unclear. In this work, we have demonstrated that a fullerene derivative could cross the external cellular membrane and it localises preferentially to the mitochondria. We propose that our finding supports the potential use of fullerenes as drug delivery agents as their structure mimics that of clathrin known to mediate endocytosis.  相似文献   
996.
RCAS1 is associated with ductal breast cancer progression   总被引:6,自引:0,他引:6  
RCAS1/EBAG9 (receptor-binding cancer antigen expressed on SiSo cells/ estrogen receptor-binding fragment-associated gene 9), an estrogen-transcribed protein, has been shown to be expressed in a wide variety of cancers, including uterine, ovarian, and lung cancer cells. Soluble and membranous RCAS1 proteins may play a role in the immune escape of tumor cells by promoting T lymphocyte inhibition of growth and apoptosis. In the present report, the presence of RCAS1 was revealed in human ductal breast cancer biopsies by immunohistochemistry. Its cytoplasmic expression was exhibited in cancer cells obtained from tumor biopsies and in breast cancer cell lines. RCAS1 significantly correlated with tumor grade. In addition, RCAS1 was identified in MCF7 culture supernatants. Those observations suggest that RCAS1 is a new marker for breast cancer progression and a possible mechanism for breast cancer immune escape.  相似文献   
997.
O'Brien PJ  Herschlag D 《Biochemistry》2002,41(9):3207-3225
Escherichia coli alkaline phosphatase (AP) is the prototypical two metal ion catalyst with two divalent zinc ions bound approximately 4 A apart in the active site. Studies spanning half a century have elucidated many structural and mechanistic features of this enzyme, rendering it an attractive model for investigating the potent catalytic power of bimetallic centers. Unfortunately, fundamental mechanistic features have been obscured by limitations with the standard assays. These assays generate concentrations of inorganic phosphate (P(i)) in excess of its inhibition constant (K(i) approximately 1 muM). This tight binding by P(i) has affected the majority of published kinetic constants. Furthermore, binding limits k(cat)/K(m) for reaction of p-nitrophenyl phosphate, the most commonly employed substrate. We describe a sensitive (32)P-based assay for hydrolysis of alkyl phosphates that avoids the complication of product inhibition. We have revisited basic mechanistic features of AP with these alkyl phosphate substrates. The results suggest that the chemical step for phosphorylation of the enzyme limits k(cat)/K(m). The pH-rate profile and additional results suggest that the serine nucleophile is active in its anionic form and has a pK(a) of < or = 5.5 in the free enzyme. An inactivating pK(a) of 8.0 is observed for binding of both substrates and inhibitors, and we suggest that this corresponds to ionization of a zinc-coordinated water molecule. Counter to previous suggestions, inorganic phosphate dianion appears to bind to the highly charged AP active site at least as strongly as the trianion. The dependence of k(cat)/K(m) on the pK(a) of the leaving group follows a Br?nsted correlation with a slope of beta(lg) = -0.85 +/- 0.1, differing substantially from the previously reported value of -0.2 obtained from data with a less sensitive assay. This steep leaving group dependence is consistent with a largely dissociative transition state for AP-catalyzed hydrolysis of phosphate monoesters. The new (32)P-based assay employed herein will facilitate continued dissection of the AP reaction by providing a means to readily follow the chemical step for phosphorylation of the enzyme.  相似文献   
998.
999.
Polarization-modulated second harmonic generation in collagen   总被引:6,自引:0,他引:6       下载免费PDF全文
Collagen possesses a strong second-order nonlinear susceptibility, a nonlinear optical property characterized by second harmonic generation in the presence of intense laser beams. We present a new technique involving polarization modulation of an ultra-short pulse laser beam that can simultaneously determine collagen fiber orientation and a parameter related to the second-order nonlinear susceptibility. We demonstrate the ability to discriminate among different patterns of fibrillar orientation, as exemplified by tendon, fascia, cornea, and successive lamellar rings in an intervertebral disc. Fiber orientation can be measured as a function of depth with an axial resolution of approximately 10 microm. The parameter related to the second-order nonlinear susceptibility is sensitive to fiber disorganization, oblique incidence of the beam on the sample, and birefringence of the tissue. This parameter represents an aggregate measure of tissue optical properties that could potentially be used for optical imaging in vivo.  相似文献   
1000.
Gale M  Blakely CM  Darveau A  Romano PR  Korth MJ  Katze MG 《Biochemistry》2002,41(39):11878-11887
The 52 kDa protein referred to as P52(rIPK) was first identified as a regulator of P58(IPK), a cellular inhibitor of the RNA-dependent protein kinase (PKR). P52(rIPK) and P58(IPK) each possess structural domains implicated in stress signaling, including the charged domain of P52(rIPK) and the tetratricopeptide repeat (TPR) and DnaJ domains of P58(IPK). The P52(rIPK) charged domain exhibits homology to the charged domains of Hsp90, including the Hsp90 geldanamycin-binding domain. Here we present an in-depth analysis of P52(rIPK) function and expression, which first revealed that the 114 amino acid charged domain was necessary and sufficient for interaction with P58(IPK). This domain bound specifically to P58(IPK) TPR domain 7, the domain adjacent to the TPR motif required for P58(IPK) interaction with PKR, thus providing a mechanism for P52(rIPK) inhibition of P58(IPK) function. Both the charged domain of P52(rIPK) and the TPR 7 domain of P58(IPK) were required for P52(rIPK) to mediate downstream control of PKR activity, eIF2alpha phosphorylation, and cell growth. Furthermore, we found that P52(rIPK) and P58(IPK) formed a stable intracellular complex during the acute response to cytoplasmic stress induced by a variety of stimuli. We propose a model in which the P52(rIPK) charged domain functions as a TPR-specific signaling motif to directly regulate P58(IPK) within a larger cytoplasmic stress signaling cascade culminating in the control of PKR activity and cellular mRNA translation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号