首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17762篇
  免费   1523篇
  国内免费   9篇
  19294篇
  2023年   90篇
  2022年   189篇
  2021年   396篇
  2020年   225篇
  2019年   278篇
  2018年   356篇
  2017年   309篇
  2016年   488篇
  2015年   825篇
  2014年   911篇
  2013年   1075篇
  2012年   1440篇
  2011年   1315篇
  2010年   878篇
  2009年   837篇
  2008年   1093篇
  2007年   1109篇
  2006年   985篇
  2005年   1026篇
  2004年   930篇
  2003年   857篇
  2002年   828篇
  2001年   150篇
  2000年   130篇
  1999年   187篇
  1998年   239篇
  1997年   164篇
  1996年   142篇
  1995年   111篇
  1994年   121篇
  1993年   120篇
  1992年   103篇
  1991年   86篇
  1990年   119篇
  1989年   99篇
  1988年   84篇
  1987年   88篇
  1986年   49篇
  1985年   82篇
  1984年   91篇
  1983年   59篇
  1982年   79篇
  1981年   68篇
  1980年   49篇
  1979年   46篇
  1978年   37篇
  1977年   34篇
  1976年   30篇
  1975年   20篇
  1974年   28篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The optical properties of systems composed of the polymers PolyeraActivInk? N2200 and P3HT are experimentally and theoretically investigated using UV-Vis spectroscopy and time-dependent density functional theory calculations, respectively. From a theoretical point of view, we carried out an analysis considering several functionals and model oligomers of different sizes to mimic the polymers. As our studies were performed with and without solvents, a first important result regards the fact that, by considering solvent effects, a better agreement between theoretical and experimental results could be achieved. Our findings also show that an optimally tuned functional is better suited to describe the experimental absorption profile than a hybrid one for the flexible polymer (P3HT). For the almost rigid polymer considered here (N2200), on the other hand, hybrid functionals may perform better than tuned functionals.  相似文献   
992.
We redemonstrate that SwrA is essential for swarming motility in Bacillus subtilis, and we reassert that laboratory strains of B. subtilis do not swarm. Additionally, we find that a number of other genes, previously reported to be required for swarming in laboratory strains, are dispensable for robust swarming motility in an undomesticated strain. We attribute discrepancies in the literature to a lack of reproducible standard experimental conditions, selection for spontaneous swarming suppressors, inadvertent genetic linkage to swarming mutations, and auxotrophy.Many species of bacteria are capable of flagellum-mediated swimming motility in liquid broth. Of those species, a subset is also capable of a related, but genetically separable, form of flagellum-mediated surface movement called swarming motility (17). Examples of swarming-proficient species include Proteus mirabilis, Vibrio parahaemolyticus, Serratia marcescens, Escherichia coli, Salmonella enterica, and Bacillus subtilis (1, 15, 16, 20, 28). In general, swarming requires a surfactant or wetting agent to reduce surface tension, an increase in flagellar number per cell, and other genetic features that are distinct from swimming (7, 14).There is confusion in the literature concerning the genetic requirements of the swarming phenotype of B. subtilis. It is generally accepted that the ancestral undomesticated strain B. subtilis 3610 exhibits robust swarming motility (18, 20, 33). Swarming motility of strain 3610 requires the production of a secreted surfactant, called surfactin (6, 20), to reduce surface tension and permit surface spreading, and it also requires the protein SwrA to activate flagellar biosynthesis gene expression and increase the number of flagella on the cell surface (5, 20). Some reports claim that domesticated derivatives of 3610, such as the commonly used laboratory strain 168, are also swarming proficient (10, 18, 19, 24). Strain 168, however, is defective in both surfactin production (9, 25) and SwrA (5, 21, 31), and thus, swarming 168 strains challenge the genetic definition of swarming motility. Our lab has never observed swarming in laboratory strains, and here we investigated swarming motility in a reportedly swarming-proficient 168 strain.We obtained a reportedly swarming-proficient 168 strain (13) (generous gift of Simone Séror, Orsay University, Paris-Sud, France) (Table (Table1)1) and compared its swarming phenotype to that of 3610 under our standard conditions (20). Swarm plates were prepared one day prior to use with 25 ml of LB medium (10 g Bacto tryptone, 5 g Bacto yeast extract, 5 g NaCl per liter) fortified with 0.7% Bacto agar. To minimize water on the agar surface and thus minimize the potentially confounding influence of swimming motility, plates were dried 20 min prior to inoculation and 10 min postinoculation open-faced in a laminar flow hood. For qualitative swarm assays, plates were centrally inoculated with cells from a freshly grown overnight colony using a sterile stick. For quantitative swarm expansion assays, 1 ml of cells grown to mid-exponential phase (optical density at 600 nm [OD600], 0.5) was resuspended in PBS buffer (8 g NaCl, 0.2 g KCl, 1.44 g Na2HPO4, 0.24 g KH2PO4 per liter, pH 7.0) containing 0.5% India ink (Higgins) to an OD600 of 10 and centrally spotted (10 μl). Swarm expansion was measured at 0.5-h intervals along a transect on the plate. Plates were incubated at 37°C in 20 to 30% humidity. Whereas strain 3610 was swarming proficient, strain 168 (Orsay) was swarming deficient (Fig. (Fig.1A).1A). Thus, strain 168 (Orsay) appeared to behave similarly to all other laboratory strains we have tested previously (20, 21).Open in a separate windowFIG. 1.Swarming motility on LB and B media. In qualitative plate images, colonized agar appears white and uncolonized agar appears black on LB and B media, as indicated. Swarming cells colonize a larger surface area than nonswarming cells. All strains are derivatives of strain 3610 unless otherwise indicated. Bar, 2 cm. (A) Quantitative swarm expansion assays on solid medium and growth in liquid medium of the indicated strains on LB medium (closed symbols) and on B medium (open symbols). To indicate variability in a particular experiment, we have reproduced the quantitative swarm expansion assay of strain 3610 on LB and B media with error bars in Fig. S5 in the supplemental material. (B) Quantitative swarm expansion assays on LB (closed symbols) and B (open symbols) media. The following strains were used: DS3337 (sfp), DS2415 (swrA), DS5106 (168 swrA+), DS5758 (168 sfp+), and DS5759 (168 swrA+ sfp+). In all assays, B medium was made according to reference 2 except for strain DS5759, for which B medium was supplemented with 780 μM threonine to compensate for thrC auxotrophy. (C) Swarm plates of the indicated strains on LB medium made with equal parts peptone instead of tryptone. (D) Quantitative swarm expansion assays of the indicated 3610-derived mutant strains on LB medium (closed symbols) and on B medium (open symbols). The following strains were used: DS72 (yvzB), DS2268 (epr), DS3903 (phrC), DS4978 (rapC), DS4979 (oppD), DS2509 (swrB), and DS3649 (degU). All points are averages for three replicates.

TABLE 1.

Strains
StrainGenotypea
168trpC2 swrA sfp (13)
3610Wild type
DS72yvzB::tet (21)
DS2268epr::kan
DS2415ΔswrA
DS2509ΔswrB
DS3337sfp::mls
DS3649ΔdegU
DS3903phrC::spec
DS4978rapC::spec
DS4979oppD::kan
DS5106168 trpC2 swrA sfp amyE::PswrA-swrA cat
DS5758168 trpC2 swrA sfp amyE::sfp+ cat
DS5759168 trpC2 swrA sfp amyE::PswrA-swrA cat thrC::sfp+ mls
Open in a separate windowaAll strains are in the 3610 genetic background unless otherwise indicated.We next explored the genetic basis for the swarming defect we observed in strain 168 (Orsay). As with other laboratory strains, colonies of strain 168 (Orsay) failed to produce the transparent ring normally indicative of surfactin production, due to a mutation of the gene sfp (25). Complementation with the wild-type sfp gene in 168 was sufficient to restore surfactin production but was insufficient to restore swarming motility (Fig. (Fig.1B)1B) (20). Laboratory strains also fail to swarm because of a loss-of-function frameshift mutation in the gene encoding SwrA (5, 21). Sequencing of the swrA gene confirmed that strain 168 (Orsay) contained the frameshift mutation, but introduction of a swrA complementation construct at an ectopic site in the chromosome (amyE::PswrA-swrA) was also insufficient to restore swarming motility (Fig. (Fig.1B).1B). Swarming motility was fully rescued, however, when sfp and swrA were simultaneously complemented in the 168 strain (Fig. (Fig.1B)1B) or when the swrA frameshift mutation was repaired in spontaneous suppressors isolated from 168 complemented with sfp alone (see Fig. S1 in the supplemental material). Furthermore, mutation of either sfp or swrA in the 3610 genetic background abolished swarming (Fig. (Fig.1B).1B). We conclude that Sfp and SwrA are necessary for swarming. We further conclude that, with respect to swarming motility, strain 168 (Orsay) is genetically no different from any other laboratory strain we have tested, as it fails to swarm due to simultaneous defects in Sfp and SwrA (21). We infer that the apparent swarming observed in some laboratory strains is not due to genetic differences but rather due to differences in experimental conditions.In our swarming assays, we take steps to minimize surface water. In some cases of the reported swarming of strain 168, plates were poured 1 h before use, dried for 5 min, and incubated at 60 to 70% humidity (13). When 0.7% agar LB plates were freshly poured and not dried, we noticed that toothpick inoculation of the cells disturbed the agar surface and caused a pool of water to well forth from the agar (see Fig. S2 in the supplemental material). Pools of water emerged even when the plates were dried for 5 or 10 min prior to inoculation, but water did not emerge when the plates were dried for 15 min or longer (see Fig. S2 in the supplemental material). The colony size of strain 168 was proportional to the amount of water extracted from the agar, but the cells did not exhibit swarming motility (see Fig. S2 in the supplemental material). We conclude that excess water was not sufficient to promote swarming of the laboratory strain. Nonetheless, we recommend drying plates for 20 min prior to inoculation to minimize any contribution of swimming motility to apparent surface migration.Another difference in experimental conditions may concern the nutritional content of the medium. Some labs have tested swarming motility on LB medium in which tryptone was replaced by an equal amount of peptone (13). We reproduced the “LB” medium containing peptone and found that whereas strain 3610 was swarming proficient, strain 168 was swarming deficient (Fig. (Fig.1C).1C). Thus, the peptone substitution did not promote swarming in lab strains.Some labs have also reported swarming of laboratory strains on a defined medium called B medium [15 mM (NH4)2SO4, 8 mM MgSO4·7H2O, 27 mM KCl, 7 mM sodium citrate·H2O, 50 mM Tris·HCl (pH 7.5), 2 mM CaCl2·2H2O, 1 μM FeSO4·7H2O, 10 μM MnSO4·4H2O, 0.6 mM KH2PO4, 4.5 mM glutamic acid, 860 μM lysine, 780 μM tryptophan, and 0.5% glucose) (2, 13, 18, 19). In our hands, 3610 was swarming proficient on B medium, but strain 168 was swarming deficient (Fig. (Fig.1A).1A). We conclude that altering medium composition was insufficient to promote swarming of laboratory strains. Furthermore, mutation of either sfp or swrA rendered strain 3610 nonswarming on B medium, and complementation of sfp and swrA restored B medium swarming to strain 168 (Fig. (Fig.1B).1B). We conclude that the genetic requirements for swarming are the same for both LB and B medium.On undefined rich LB medium, strain 3610 swarmed rapidly as a featureless monolayer, whereas on defined B medium, it swarmed in a branched dendritic pattern (18, 20) (Fig. (Fig.1A).1A). In addition, the growth rate of 3610 in liquid B medium and swarm rate on solid B medium were both reduced fivefold relative to comparable assays with LB (Table (Table2),2), suggesting that the rate of swarming and the rate of growth were related. To further explore the connection between growth rate and swarming rate, we performed swarm expansion assays at lower temperatures. At 30°C, the growth rate in LB broth was reduced 2.5-fold relative to 37°C, and the swarming rate on LB agar was reduced 2.5-fold as well (Table (Table2;2; also, see Fig. S3 in the supplemental material). We conclude that swarming rate is correlated with growth rate. We infer that differences in growth may account for differences in swarm patterns (11). We note that regardless of the medium composition or the growth rate, the duration of the lag prior to swarming initiation was relatively constant.

TABLE 2.

Growth rates and swarm ratesa
MediumTemp (°C)Swarm rate (mm/h)Growth rate (generations/h)Reduction inb:
Swarm rateGrowth rate
LB37153.511
LB3061.42.52.5
B3730.855
Open in a separate windowaStrain 3610 was used to generate all data.bRelative to cells cultured in LB at 37°C (standard conditions).Ultimately we were unable to reproduce swarming in laboratory strains, and we reassert that laboratory strains are defective for swarming-motility. It is difficult to explain reports of swarming-proficient laboratory strains, because these cells are defective for both surfactin and swrA. Thus, the apparent swarming of strain 168 must be due to poorly reproducible environmental factors and/or selection for genetic revertants.  相似文献   
993.
Coastal bermudagrass (Cynodon dactylon L.) may be a potentially important source of bio-based energy in the southern US due to its vast acreage. It is often produced as part of a waste management plan with varying nutrient composition and energy characteristics on fields irrigated with livestock wastewater. The objective of this study was to determine the effect of subsurface drip irrigation with treated swine wastewater on both the quantity and quality of bermudagrass bioenergy. The treated wastewater was recycled from an advanced treatment system and used for irrigation of bermudagrass in two crop seasons. The experiment had nine water and drip line spacing treatments arrayed in a randomized complete block-design with four replicates. The bermudagrass was analyzed for calorific and mineral contents. Bermudagrass energy yields for 2004 and 2005 ranged from 127.4 to 251.4 MJ ha−1. Compared to irrigation with commercial nitrogen fertilizer, the least biomass energy density was associated with bermudagrass receiving treated swine wastewater. Yet, in 2004 the wastewater irrigated bermudagrass had greater hay yields leading to greater energy yield per ha. This decrease in energy density of wastewater irrigated bermudagrass was associated with increased concentrations of K, Ca, and Na. After thermal conversion, these compounds are known to remain in the ash portion thereby decreasing the energy density. Nonetheless, the loss of energy density using treated effluent via SDI may be offset by the positive influence of these three elements for their catalytic properties in downstream thermal conversion processes such as promoting a lesser char yield and greater combustible gas formation.  相似文献   
994.
The Atacama Desert is the driest non‐polar desert on Earth, presenting precarious conditions for biological activity. In the arid coastal belt, life is restricted to areas with fog events that cause almost daily wet–dry cycles. In such an area, we discovered a hitherto unknown and unique ground covering biocenosis dominated by lichens, fungi, and algae attached to grit‐sized (~6 mm) quartz and granitoid stones. Comparable biocenosis forming a kind of a layer on top of soil and rock surfaces in general is summarized as cryptogamic ground covers (CGC) in literature. In contrast to known CGC from arid environments to which frequent cyclic wetting events are lethal, in the Atacama Desert every fog event is answered by photosynthetic activity of the soil community and thus considered as the desert's breath. Photosynthesis of the new CGC type is activated by the lowest amount of water known for such a community worldwide thus enabling the unique biocenosis to fulfill a variety of ecosystem services. In a considerable portion of the coastal Atacama Desert, it protects the soil from sporadically occurring splash erosion and contributes to the accumulation of soil carbon and nitrogen as well as soil formation through bio‐weathering. The structure and function of the new CGC type are discussed, and we suggest the name grit–crust. We conclude that this type of CGC can be expected in all non‐polar fog deserts of the world and may resemble the cryptogam communities that shaped ancient Earth. It may thus represent a relevant player in current and ancient biogeochemical cycling.  相似文献   
995.
The continuous increase in global population prompts increased wheat production. Future wheat (Triticum aestivum L.) breeding will heavily rely on dissecting molecular and genetic bases of wheat yield and related traits which is possible through the discovery of quantitative trait loci (QTLs) in constructed populations, such as recombinant inbred lines (RILs). Here, we present an evaluation of 92 RILs in a bi-parental RIL mapping population (the International Triticeae Mapping Initiative Mapping Population [ITMI/MP]) using newly generated phenotypic data in 3-year experiments (2015), older phenotypic data (1997–2009), and newly created single nucleotide polymorphism (SNP) marker data based on 92 of the original RILs to search for novel and stable QTLs. Our analyses of more than 15 unique traits observed in multiple experiments included analyses of 46 traits in three environments in the USA, 69 traits in eight environments in Germany, 149 traits in 10 environments in Russia, and 28 traits in four environments in India (292 traits in 25 environments) with 7584 SNPs (292 × 7584 = 2 214 528 data points). A total of 874 QTLs were detected with limit of detection (LOD) scores of 2.01–3.0 and 432 QTLs were detected with LOD > 3.0. Moreover, 769 QTLs could be assigned to 183 clusters based on the common markers and relative proximity of related QTLs, indicating gene-rich regions throughout the A, B, and D genomes of common wheat. This upgraded genotype–phenotype information of ITMI/MP can assist breeders and geneticists who can make crosses with suitable RILs to improve or investigate traits of interest.  相似文献   
996.
997.
The rat alpha 7 neuronal nicotinic acetylcholine receptor was expressed and studied in Xenopus oocytes. The magnitude and reversal potential of instantaneous whole cell currents were examined in solutions containing varying concentrations of either calcium or barium, and in the presence or absence of the intracellular calcium chelator BAPTA. In external barium, application of nicotine elicits an inwardly rectifying response; in calcium the response is larger and has a linear IV relation. Pretreatment of oocytes with BAPTA-AM could not prevent activation of calcium-dependent chloride channels in external Ringer containing calcium. Using an extended GHK equation, the permeability ratio PBa/PNa of the alpha 7 receptor was determined to be about 17. Our results suggest that alpha 7 nicotinic receptors are highly permeable to divalent cations.  相似文献   
998.
Signalling by G proteins is controlled by the regulator of G-protein signalling (RGS) proteins that accelerate the GTPase activity of Galpha subunits and act in a G-protein-coupled receptor (GPCR)-specific manner. The conserved RGS domain accelerates the G subunit GTPase activity, whereas the variable amino-terminal domain participates in GPCR recognition. How receptor recognition is achieved is not known. Here, we show that the scaffold protein spinophilin (SPL), which binds the third intracellular loop (3iL) of several GPCRs, binds the N-terminal domain of RGS2. SPL also binds RGS1, RGS4, RGS16 and GAIP. When expressed in Xenopus laevis oocytes, SPL markedly increased inhibition of alpha-adrenergic receptor (alphaAR) Ca2+ signalling by RGS2. Notably, the constitutively active mutant alphaAR(A293E) (the mutation being in the 3iL) did not bind SPL and was relatively resistant to inhibition by RGS2. Use of betaAR-alphaAR chimaeras identified the 288REKKAA293 sequence as essential for the binding of SPL and inhibition of Ca2+ signalling by RGS2. Furthermore, alphaAR-evoked Ca2+ signalling is less sensitive to inhibition by SPL in rgs2-/- cells and less sensitive to inhibition by RGS2 in spl-/- cells. These findings provide a general mechanism by which RGS proteins recognize GPCRs to confer signalling specificity.  相似文献   
999.
MuS110 is a BiTE antibody bispecific for murine EpCAM (CD326) and murine CD3. A recent study has shown that muS110 has significant anti tumor activity at well-tolerated doses as low as 5 μg/kg in orthotopic breast and lung cancer models (Amann et al. in Cancer Res 68:143–151, 2008). Here, we have explored the safety profile of muS110 at higher doses. Escalation to 50 μg/kg muS110 caused in mice transient loss of body weight, and transient piloerection, hypomotility, hypothermia and diarrhoea. These clinical signs coincided with serum peaks of TNF-α, IL-6, IL-2, IFN-γ and IL-4, and an increase of surface markers for T cell activation. Because activation of T cells in response to BiTE antibodies is typically dependent on target cells, we analyzed mouse blood for the presence of EpCAM+ cells. Various mouse strains presented with a subpopulation of 2–3% EpCAM+ blood cells, mostly B and T lymphocytes, which was not detected in human blood samples. In vitro experiments in which the number of EpCAM+ cells in blood samples was either reduced or increased suggested that both T cell activation and cytokine release in response to muS110 was dependent on the number of target-expressing cells. In support for a role of EpCAM+ lymphocytes in the observed side effects, reduction of EpCAM+ blood cells in mice via a low-dose pre treatment with muS110 dramatically increased the tolerability of animals up to at least 500 μg/kg of the BiTE antibody. This high tolerability to muS110 occurred in the presence of non-compromised T cells. No damage to EpCAM+ epithelial tissues was evident from histopathological examination of animals daily injected with 100 μg/kg muS110 for 28 days. In summary, these observations suggest that side effects of muS110 in mice were largely caused by an acute T cell activation that was triggered by a subpopulation of EpCAM+ lymphocytes. Because humans have extremely low numbers of EpCAM+ cells in blood, this toxicity of an EpCAM-specific BiTE may be specific for mice. M. Amann and M. Friedrich contributed equally to this work.  相似文献   
1000.
Malus sieversii (Lebed.) M. Roem. is a wild progenitor species of the domesticated apple. It is found across a mountainous region of central Asia and has been the focus of several collection expeditions by the USDA-ARS-National Plant Germplasm System. This study used microsatellite variation at seven loci to estimate diversity and differentiation within M. sieversii using several complimentary approaches. Multilocus genotypes were amplified from 949 individuals representing seedling trees from 88 half-sib families from eight M. sieversii populations collected in Kazakhstan. Apportioning of genetic variation was estimated at both the family and site level. Analyses using a hierarchical model to estimate F st showed that differentiation among individual families is more than three times greater than differentiation among sites. In addition, average gene diversity and allelic richness varied significantly among sites. A rendering of a genetic network among all sites showed that differentiation is largely congruent with geographical location. In addition, nonhierarchical Bayesian assignment methods were used to infer genetic clusters across the collection area. We detected four genetic clusters in the data set. The quality of these assignments was evaluated over multiple Markov Chain Monte Carlo runs using both posterior likelihood and stability of the assignments. The spatial pattern of genetic assignments among the eight collection sites shows two broadly distributed and two narrowly distributed clusters. These data indicate that the southwestern collection sites are more admixed and more diverse than the northern sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号