首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26101篇
  免费   2427篇
  国内免费   9篇
  28537篇
  2023年   129篇
  2022年   270篇
  2021年   580篇
  2020年   320篇
  2019年   398篇
  2018年   494篇
  2017年   429篇
  2016年   722篇
  2015年   1203篇
  2014年   1306篇
  2013年   1534篇
  2012年   1991篇
  2011年   1914篇
  2010年   1251篇
  2009年   1177篇
  2008年   1557篇
  2007年   1539篇
  2006年   1411篇
  2005年   1434篇
  2004年   1292篇
  2003年   1180篇
  2002年   1107篇
  2001年   320篇
  2000年   282篇
  1999年   321篇
  1998年   326篇
  1997年   237篇
  1996年   204篇
  1995年   174篇
  1994年   184篇
  1993年   191篇
  1992年   227篇
  1991年   186篇
  1990年   231篇
  1989年   190篇
  1988年   175篇
  1987年   166篇
  1986年   110篇
  1985年   152篇
  1984年   153篇
  1983年   120篇
  1982年   123篇
  1981年   100篇
  1980年   81篇
  1979年   99篇
  1978年   85篇
  1977年   81篇
  1976年   76篇
  1974年   64篇
  1973年   56篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
This study aimed to underline the interaction between hypoxia-inducible factor-1 (HIF-1) and the inducible nitric oxide synthase (iNOS) gene in vivo and their contribution to the delayed myocardial preconditioning induced by acute intermittent hypoxia (IH) in the rat using chromatin immunoprecipitation and pharmacological inhibition by low-dose cadmium. Langendorff-perfused hearts of Wistar rats exposed to normoxia or IH 24 h earlier were submitted to global ischemia and reperfusion. Effects of iNOS inhibition by aminoguanidine (100 microM) before ischemia or of low-dose injection of cadmium chloride (1 mg/kg) before normoxia or IH were tested. Myocardial HIF-1 and iNOS quantification and in vivo chromatin immunoprecipitation of HIF-1 bound to the iNOS gene promoter were performed. IH-induced delayed cardioprotection resulted in an improvement in coronary flow and functional recovery at reperfusion and a decrease in infarct size. Myocardial HIF-1 activity was increased with resulting targeting of the iNOS gene. Aminoguanidine abolished the cardioprotective effects of IH. Cadmium chloride treatment before IH prevented myocardial HIF-1 activation (72.3 +/- 4.0 vs. 42.1 +/- 9.7 arbitrary units after cadmium chloride; P < 0.05), targeting of the iNOS gene, iNOS expression, and preconditioning (infarct size: 15.9 +/- 5.6 vs. 30.1 +/- 5.4% after cadmium chloride; P < 0.05). This study is the first to demonstrate the interaction of HIF-1 with the myocardial iNOS gene in situ after hypoxic preconditioning. Prevention of HIF-1 activation and iNOS gene targeting by a single low dose of cadmium abolished the delayed cardioprotective effects, bringing insight into the cardiovascular consequences of cadmium exposure.  相似文献   
992.
The bottom-dwelling, longhorn sculpin, Myoxocephalus octodecimspinosus, is traditionally viewed as a stenohaline marine fish, but fishermen have described finding this sculpin in estuaries during high tide. Little is known about the salinity tolerance of the longhorn sculpin; thus, the purposes of these experiments were to explore the effects of low environmental salinity on ion transporter expression and distribution in the longhorn sculpin gill. Longhorn sculpin were acclimated to either 100% seawater (SW, sham), 20% SW, or 10% SW for 24 or 72 hr. Plasma osmolality, sodium, potassium, and chloride concentrations were not different between the 20 and 100% treatments; however, they were 20-25% lower with exposure to 10% SW at 24 and 72 hr. In the teleost gill, regulation of Na(+), K(+)-ATPase (NKA), Na(+)-K(+)-2Cl(-) cotransporter (NKCC1), and the chloride channel, cystic fibrosis transmembrane conductance regulator (CFTR) are necessary for ion homeostasis. We immunolocalized these proteins to the mitochondrion-rich cell of the gill and determined that acclimation to low salinity does not affect their localization. Also, there was not a downregulation of gill NKA, NKCC1, and CFTR mRNA or protein during acclimation to low salinities. Collectively, these results suggest that down to 20% SW longhorn sculpin are capable of completely regulating ion levels over a 72-hr period, whereas 10% SW exposure results in a significant loss of ions and no change in ion transporter density or localization in the gill. We conclude that longhorn sculpin can tolerate low-salinity environments for days but, because they cannot regulate ion transporter density, they are unable to tolerate low salinity for longer periods or enter freshwater (FW). The genus Myoxocephalus has three FW species, making this group an excellent model to test evolutionary and physiological mechanisms that allow teleosts to invade new low salinities successfully.  相似文献   
993.

Background

MicroRNAs (miRNA) are small non-coding RNAs that regulate translation of mRNA and protein. Loss or enhanced expression of miRNAs is associated with several diseases, including cancer. However, the identification of circulating miRNA in healthy donors is not well characterized. Microvesicles, also known as exosomes or microparticles, circulate in the peripheral blood and can stimulate cellular signaling. In this study, we hypothesized that under normal healthy conditions, microvesicles contain miRNAs, contributing to biological homeostasis.

Methodology/Principal Findings

Microvesicles were isolated from the plasma of normal healthy individuals. RNA was isolated from both the microvesicles and matched mononuclear cells and profiled for 420 known mature miRNAs by real-time PCR. Hierarchical clustering of the data sets indicated significant differences in miRNA expression between peripheral blood mononuclear cells (PBMC) and plasma microvesicles. We observed 71 miRNAs co-expressed between microvesicles and PBMC. Notably, we found 33 and 4 significantly differentially expressed miRNAs in the plasma microvesicles and mononuclear cells, respectively. Prediction of the gene targets and associated biological pathways regulated by the detected miRNAs was performed. The majority of the miRNAs expressed in the microvesicles from the blood were predicted to regulate cellular differentiation of blood cells and metabolic pathways. Interestingly, a select few miRNAs were also predicted to be important modulators of immune function.

Conclusions

This study is the first to identify and define miRNA expression in circulating plasma microvesicles of normal subjects. The data generated from this study provides a basis for future studies to determine the predictive role of peripheral blood miRNA signatures in human disease and will enable the definition of the biological processes regulated by these miRNA.  相似文献   
994.
Coumarin ( 1 ) and kaurane‐type diterpenes are considered the bioactive constituents of Mikania glomerata and M. laevigata, used in Brazil to treat respiratory affective disorders. The seasonal variation of 1 , ortho‐coumaric acid ( 2 ), benzoylgrandifloric acid ( 3 ), cinnamoylgrandifloric acid ( 4 ), and kaurenoic acid ( 5 ) in leaves of both species, cultivated in full sunlight and under shade levels of 40 and 80%, was quantified by HPLC. Compound 2 was detected solely in M. laevigata in concentrations below the limit of quantification. Coumarin was not found in M. glomerata, whereas its concentration reached 0.94±0.24% (w/w) in M. laevigata farmed in summer under 80% shading. Both Mikania species produced higher amounts of kaurane diterpenes when cultivated in plenty of sunlight. Hence, maximum contents of 1 are reached in M. laevigata cultivated under high shading, but with reduced concentrations of 3 – 5 . Conversely, M. glomerata should be cultivated under full sunlight and harvested in winter for highest concentrations of kaurane‐type diterpenes.  相似文献   
995.
The serine-rich repeat glycoproteins of Gram-positive bacteria comprise a large family of cell wall proteins. Streptococcus agalactiae (group B streptococcus, GBS) expresses either Srr1 or Srr2 on its surface, depending on the strain. Srr1 has recently been shown to bind fibrinogen, and this interaction contributes to the pathogenesis of GBS meningitis. Although strains expressing Srr2 appear to be hypervirulent, no ligand for this adhesin has been described. We now demonstrate that Srr2 also binds human fibrinogen and that this interaction promotes GBS attachment to endothelial cells. Recombinant Srr1 and Srr2 bound fibrinogen in vitro, with affinities of KD = 2.1 × 10−5 and 3.7 × 10−6 m, respectively, as measured by surface plasmon resonance spectroscopy. The binding site for Srr1 and Srr2 was localized to tandem repeats 6–8 of the fibrinogen Aα chain. The structures of both the Srr1 and Srr2 binding regions were determined and, in combination with mutagenesis studies, suggest that both Srr1 and Srr2 interact with a segment of these repeats via a “dock, lock, and latch” mechanism. Moreover, properties of the latch region may account for the increased affinity between Srr2 and fibrinogen. Together, these studies identify how greater affinity of Srr2 for fibrinogen may contribute to the increased virulence associated with Srr2-expressing strains.  相似文献   
996.
Background: The uptake and biotransformation of γ-tocopherol (γ-T) in humans is largely unknown. Using a stable isotope method we investigated these aspects of γ-T biology in healthy volunteers and their response to γ-T supplementation.

Methods: A single bolus of 100 mg of deuterium labeled γ-T acetate (d2-γ-TAC, 94% isotopic purity) was administered with a standard meal to 21 healthy subjects. Blood and urine (first morning void) were collected at baseline and a range of time points between 6 and 240 h post-supplemetation. The concentrations of d2 and d0-γ-T in plasma and its major metabolite 2,7,8-trimethyl-2-(b-carboxyethyl)-6-hydroxychroman (-γ-CEHC) in plasma and urine were measured by GC-MS. In two subjects, the total urine volume was collected for 72 h post-supplementation. The effects of γ-T supplementation on α-T concentrations in plasma and α-T and γ-T metabolite formation were also assessed by HPLC or GC-MS analysis.

Results: At baseline, mean plasma α-T concentration was approximately 15 times higher than γ-T (28.3 vs. 1.9 µmol/l). In contrast, plasma γ-CEHC concentration (0.191 µmol/l) was 12 fold greater than α-CEHC (0.016 µmol/l) while in urine it was 3.5 fold lower (0.82 and 2.87 µmol, respectively) suggesting that the clearance of α-CEHC from plasma was more than 40 times that of γ-CEHC. After d2-γ-TAC administration, the d2 forms of γ-T and γ-CEHC in plasma and urine increased, but with marked inter-individual variability, while the d0 species were hardly affected. Mean total concentrations of γ-T and γ-CEHC in plasma and urine peaked, respectively, between 0–9, 6–12 and 9–24 h post-supplementation with increases over baseline levels of 6–14 fold. All these parameters returned to baseline by 72 h. Following challenge, the total urinary excretion of d2-γ-T equivalents was approximately 7 mg. Baseline levels of γ-T correlated positively with the post-supplementation rise of (d0 + d2) – γ – T and γ-CEHC levels in plasma, but correlated negatively with urinary levels of (d0 + d2)-γ-CEHC. Supplementation with 100 mg γ-TAC had minimal influence on plasma concentrations of α-T and α-T-related metabolite formation and excretion.

Conclusions: Ingestion of 100mg of γ-TAC transiently increases plasma concentrations of γ-T as it undergoes sustained catabolism to CEHC without markedly influencing the pre-existing plasma pool of γ-T nor the concentration and metabolism of α-T. These pathways appear tightly regulated, most probably to keep high steady-state blood ratios α-T to γ-T and γ-CEHC to α-CEHC.  相似文献   
997.
Acid mine drainage (AMD) barrens result from destruction of vegetation within AMD flow paths. When exposed to air, soluble iron in AMD undergoes oxidation and hydrolysis to form ferric iron (oxyhydr)oxides which accumulate on soil surfaces. A restoration experiment was conducted at a 50‐year‐old AMD barrens created by discharge from an abandoned underground coal mine. The objective was to determine whether vegetation could be established by altering rather than removing surface layers of acidic precipitates at a site representative of other mining‐degraded areas. Three zones in the barrens were identified based on moisture content, pH (2.7–3.3), and thickness of precipitates (0–35 cm). Our hypothesis was that application of the same reclamation method to all zones would fail to sustain >70% vegetative cover in each zone after four growing seasons. The method consisted of applying 11 t/ha lime and 27 or 54 t/ha compost before rototilling (top 15 cm) and mulching with oat straw containing viable seeds for a nurse crop. Lime‐only plots were included for comparison, and all amended plots were sown with a mine reclamation seed mix. Oats, sown species, and indigenous species dominated cover in the first, second, and fourth growing seasons, respectively. In the fourth year following reclamation, compost‐amended plots had >70% cover and improved soil properties in all three zones, providing evidence to reject our hypothesis. Vegetative restoration of AMD barrens did not require removal of highly acidic precipitates, since they could be transformed at low‐cost into a medium that supports indigenous plants.  相似文献   
998.
999.
Haemoglobin initiates free radical chemistry. In particular, the interactions of peroxides with the ferric (met) species of haemoglobin generate two strong oxidants: ferryl iron and a protein-bound free radical. We have studied the endogenous defences to this reactive chemistry in a rabbit model following 20% exchange transfusion with cell-free haemoglobin stabilized in tetrameric form [via cross-linking with bis-(3,5-dibromosalicyl)fumarate]. The transfusate contained 95% oxyhaemoglobin, 5% methaemoglobin and 25 microM free iron. EPR spectroscopy revealed that the free iron in the transfusate was rendered redox inactive by rapid binding to transferrin. Methaemoglobin was reduced to oxyhaemoglobin by a slower process (t(1/2) = 1 h). No globin-bound free radicals were detected in the plasma. These redox defences could be fully attributed to a novel multifunctional role of plasma ascorbate in removing key precursors of oxidative damage. Ascorbate is able to effectively reduce plasma methaemoglobin, ferryl haemoglobin and globin radicals. The ascorbyl free radicals formed are efficiently re-reduced by the erythrocyte membrane-bound reductase (which itself uses intra-erythrocyte ascorbate as an electron donor). As well as relating to the toxicity of haemoglobin-based oxygen carriers, these findings have implications for situations where haem proteins exist outside the protective cell environment, e.g. haemolytic anaemias, subarachnoid haemorrhage, rhabdomyolysis.  相似文献   
1000.
Fat can be stored not only in adipose tissue but also in other tissues such as skeletal muscle. Fat droplets accumulated in skeletal muscle [intramyocellular lipids (IMCLs)] can be quantified by different methods, all with advantages and drawbacks. Here, we briefly review IMCL quantification methods that use biopsy specimens (biochemical quantification, electron microscopy, and histochemistry) and non-invasive alternatives (magnetic resonance spectroscopy, magnetic resonance imaging, and computed tomography). Regarding the physiological role, it has been suggested that IMCL serves as an intracellular source of energy during exercise. Indeed, IMCL content decreases during prolonged submaximal exercise, and analogously to glycogen, IMCL content is increased in the trained state. In addition, IMCL content is highest in oxidative, type 1 muscle fibers. Together, this, indeed, suggests that the IMCL content is increased in the trained state to optimally match fat oxidative capacity and that it serves as readily available fuel. However, elevation of plasma fatty acid levels or dietary fat content also increases IMCL content, suggesting that skeletal muscle also stores fat simply if the availability of fatty acids is high. Under these conditions, the uptake into skeletal muscle may have negative consequences on insulin sensitivity. Besides the evaluation of the various methods to quantify IMCLs, this perspective describes IMCLs as valuable energy stores during prolonged exercise, which, however, in the absence of regular physical activity and with overconsumption of fat, can have detrimental effects on muscular insulin sensitivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号