首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21977篇
  免费   1946篇
  国内免费   10篇
  2023年   103篇
  2022年   224篇
  2021年   461篇
  2020年   262篇
  2019年   325篇
  2018年   395篇
  2017年   368篇
  2016年   569篇
  2015年   960篇
  2014年   1050篇
  2013年   1267篇
  2012年   1669篇
  2011年   1539篇
  2010年   1034篇
  2009年   975篇
  2008年   1267篇
  2007年   1298篇
  2006年   1160篇
  2005年   1201篇
  2004年   1104篇
  2003年   990篇
  2002年   963篇
  2001年   295篇
  2000年   276篇
  1999年   283篇
  1998年   307篇
  1997年   227篇
  1996年   181篇
  1995年   159篇
  1994年   157篇
  1993年   157篇
  1992年   180篇
  1991年   129篇
  1990年   200篇
  1989年   174篇
  1988年   146篇
  1987年   135篇
  1986年   98篇
  1985年   142篇
  1984年   129篇
  1983年   91篇
  1982年   102篇
  1981年   94篇
  1980年   80篇
  1979年   100篇
  1978年   81篇
  1977年   82篇
  1976年   62篇
  1974年   74篇
  1972年   53篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Muscles are formed by fusion of individual postmitotic myoblasts to form multinucleated syncytial myotubes. The process requires a well-coordinated transition from proliferation, through migratory alignment and cycle exit, to breakdown of apposed membranes. Connexin43 protein and cell-cycle inhibitor levels are correlated, and gap junction blockers can delay muscle regeneration, so a coordinating role for gap junctions has been proposed. Here, wild-type and dominant-negative connexin43 variants (wtCx43, dnCx43) were introduced into rat myoblasts in primary culture through pIRES-eGFP constructs that made transfected cells fluoresce. GFP-positive cells and vitally-stained nuclei were counted on successive days to reveal differences in proliferation, and myotubes were counted to reveal differences in fusion. Individual transfected cells were injected with Cascade Blue, which permeates gap junctions, mixed with FITC-dextran, which requires cytoplasmic continuity to enter neighbouring cells. Myoblasts transfected with wtCx43 showed more gap-junctional coupling than GFP-only controls, began fusion sooner as judged by the incidence of cytoplasmic coupling, and formed more myotubes. Myoblasts transfected with dnCx43 remained proliferative for longer than either GFP-only or wtCx43 myoblasts, showed less coupling, and underwent little fusion into myotubes. These results highlight the critical role of gap-junctional coupling in myotube formation.  相似文献   
992.
Microarray technology was utilized to isolate disease-specific changes in gene expression by sampling across inferior parietal lobes of patients suffering from late onset AD or non-AD-associated dementia and non-demented controls. Primary focus was placed on understanding how inflammation plays a role in AD pathogenesis. Gene ontology analysis revealed that the most differentially expressed genes related to nervous system development and function and neurological disease followed by genes involved in inflammation and immunological signaling. Pathway analysis also implicated a role for chemokines and their receptors, specifically CXCR4 and CCR3, in AD. Immunohistological analysis revealed that these chemokine receptors are upregulated in AD patients. Western analysis demonstrated an increased activation of PKC, a downstream mediator of chemokine receptor signaling, in the majority of AD patients. A very specific cohort of genes related to amyloid beta accumulation and clearance were found to be significantly altered in AD. The most significantly downregulated gene in this data set was the endothelin converting enzyme 2 (ECE2), implicated in amyloid beta clearance. These data were subsequently confirmed by real-time PCR and Western blot analysis. Together, these findings open up new avenues of investigation and possible therapeutic strategies targeting inflammation and amyloid clearance in AD patients.  相似文献   
993.
Raju NB  Metzenberg RL  Shiu PK 《Genetics》2007,176(1):43-52
In Neurospora crassa, pairing of homologous DNA segments is monitored during meiotic prophase I. Any genes not paired with a homolog, as well as any paired homologs of that gene, are silenced during the sexual phase by a mechanism known as meiotic silencing by unpaired DNA (MSUD). Two genes required for MSUD have been described previously: sad-1 (suppressor of ascus dominance), encoding an RNA-directed RNA polymerase, and sad-2, encoding a protein that controls the perinuclear localization of SAD-1. Inactivation of either sad-1 or sad-2 suppresses MSUD. We have now shown that MSUD is also suppressed by either of two Spore killer strains, Sk-2 and Sk-3. These were both known to contain a haplotype segment that behaves as a meiotic drive element in heterozygous crosses of killer x sensitive. Progeny ascospores not carrying the killer element fail to mature and are inviable. Crosses homozygous for either of the killer haplotypes suppress MSUD even though ascospores are not killed. The killer activity maps to the same 30-unit-long region within which recombination is suppressed in killer x sensitive crosses. We suggest that the region contains a suppressor of MSUD.  相似文献   
994.
Drosophila biology in the genomic age   总被引:3,自引:1,他引:2  
Markow TA  O'Grady PM 《Genetics》2007,177(3):1269-1276
Over the course of the past century, flies in the family Drosophilidae have been important models for understanding genetic, developmental, cellular, ecological, and evolutionary processes. Full genome sequences from a total of 12 species promise to extend this work by facilitating comparative studies of gene expression, of molecules such as proteins, of developmental mechanisms, and of ecological adaptation. Here we review basic biological and ecological information of the species whose genomes have recently been completely sequenced in the context of current research.  相似文献   
995.
As an ancient segmental tetraploid, the maize (Zea mays L.) genome contains large numbers of paralogs that are expected to have diverged by a minimum of 10% over time. Nearly identical paralogs (NIPs) are defined as paralogous genes that exhibit > or = 98% identity. Sequence analyses of the "gene space" of the maize inbred line B73 genome, coupled with wet lab validation, have revealed that, conservatively, at least approximately 1% of maize genes have a NIP, a rate substantially higher than that in Arabidopsis. In most instances, both members of maize NIP pairs are expressed and are therefore at least potentially functional. Of evolutionary significance, members of many NIP families also exhibit differential expression. The finding that some families of maize NIPs are closely linked genetically while others are genetically unlinked is consistent with multiple modes of origin. NIPs provide a mechanism for the maize genome to circumvent the inherent limitation that diploid genomes can carry at most two "alleles" per "locus." As such, NIPs may have played important roles during the evolution and domestication of maize and may contribute to the success of long-term selection experiments in this important crop species.  相似文献   
996.
A promising route for understanding the origin and diversification of organismal form is through studies at the intersection of evolution and development (evo-devo). While much has been learned over the last two decades concerning macroevolutionary patterns of developmental change, a fundamental gap in the evo-devo synthesis is the integration of mathematical population and quantitative genetics with studies of how genetic variation in natural populations affects developmental processes. This micro-evo-devo synthesis requires model organisms with which to ask empirical questions. Threespine stickleback fish (Gasterosteus aculeatus), long a model for studying behavior, ecology and evolution, is emerging as a prominent model micro-evo-devo system. Research on stickleback over the last decade has begun to address the genetic basis of morphological variation and sex determination, and much of this work has important implications for understanding the genetics of speciation. In this paper we review recent threespine stickleback micro-evo-devo results, and outline the resources that have been developed to make this synthesis possible. The prospects for stickleback research to speed the micro-(and macro-) evo-devo syntheses are great, and this workhorse model system is well situated to continue contributing to our understanding of the generation of diversity in organismal form for many more decades.  相似文献   
997.
The human lung cytochrome P450 2A13 (CYP2A13) activates the nicotine-derived procarcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) into DNA-altering compounds that cause lung cancer. Another cytochrome P450, CYP2A6, is also present in human lung, but at much lower levels. Although these two enzymes are 93.5% identical, CYP2A13 metabolizes NNK with much lower K(m) values than does CYP2A6. To investigate the structural differences between these two enzymes the structure of CYP2A13 was determined to 2.35A by x-ray crystallography and compared with structures of CYP2A6. As expected, the overall CYP2A13 and CYP2A6 structures are very similar with an average root mean square deviation of 0.5A for the Calpha atoms. Like CYP2A6, the CYP2A13 active site cavity is small and highly hydrophobic with a cluster of Phe residues composing the active site roof. Active site residue Asn(297) is positioned to hydrogen bond with an adventitious ligand, identified as indole. Amino acid differences between CYP2A6 and CYP2A13 at positions 117, 300, 301, and 208 relate to different orientations of the ligand plane in the two protein structures and may underlie the significant variations observed in binding and catalysis of many CYP2A ligands. In addition, docking studies suggest that residues 365 and 366 may also contribute to differences in NNK metabolism.  相似文献   
998.
The capsules of two colony morphotypes of Mycobacterium avium strain 2151 were investigated, i.e. the virulent smooth-transparent (SmT1) and the nonvirulent smooth-opaque (SmO) types. From both morphotypes we separated a nonacylated arabinomannan (AM) from an acylated polysaccharide fraction by affinity chromatography, of which the AMs were structurally characterized. The AMs from the virulent morphotype, in contrast to that from the nonvirulent form, possessed a larger mannan chain and a shorter arabinan chain. Incubation of murine bone marrow-derived macrophages and human dendritic cells showed that the acylated polysaccharide fractions were potent inducers of tumor necrosis factor-alpha, interleukin-12, and interleukin-10 compared with nonacylated AMs, which led to only a marginal cytokine release. Further in vitro experiments showed that both the acylated polysaccharide fractions and the nonacylated AMs were able to induce in vitro anti-tumor cytotoxicity of human peripheral blood mononuclear cells. Thus, morphotype-specific structural differences in the capsular AMs of M. avium do not correlate with biological activity; however, their acylation is a prerequisite for effective stimulation of murine macrophages and human dendritic cells.  相似文献   
999.
RGS2, a GTPase-activating protein (GAP) for G(q)alpha, regulates vascular relaxation and blood pressure. RGS2 can be phosphorylated by type Ialpha cGMP-dependent protein kinase (cGKIalpha), increasing its GAP activity. To understand how RGS2 and cGKIalpha regulate vascular smooth muscle signaling and function, we identified signaling pathways that are controlled by cGMP in an RGS2-dependent manner and discovered new mechanisms whereby cGK activity regulates RGS2. We show that RGS2 regulates vasoconstrictor-stimulated Ca(2+) store release, capacitative Ca(2+) entry, and noncapacitative Ca(2+) entry and that RGS2 is required for cGMP-mediated inhibition of vasoconstrictor-elicited phospholipase Cbeta activation, Ca(2+) store release, and capacitative Ca(2+) entry. RGS2 is degraded in vascular smooth muscle cells via the proteasome. Inhibition of cGK activity blunts RGS2 degradation. However, inactivation of the cGKIalpha phosphorylation sites in RGS2 does not stabilize the protein, suggesting that cGK activity regulates RGS2 degradation by other mechanisms. cGK activation promotes association of RGS2 with the plasma membrane by a mechanism requiring its cGKIalpha phosphorylation sites. By regulating GAP activity, plasma membrane association, and degradation, cGKIalpha therefore may control a cycle of RGS2 activation and inactivation. By diminishing cGK activity, endothelial dysfunction may impair RGS2 activation, thereby blunting vascular relaxation and contributing to hypertension.  相似文献   
1000.
Genetic construction of a mutant strain (designated MSMEG4245) of Mycobacterium smegmatis, defective in a broadly conserved gene for a putative glycosyltransferase of the glycosyltransferase-C superfamily, results in a phenotype marked by the virtual absence of the phosphatidylinositol-containing lipomannan and lipoarabinomannan, replaced instead by a novel truncated form of lipomannan. The normal spectrum of phosphatidylinositol mannosides, long presumed precursors of these lipoglycans, was retained. Matrix-assisted laser desorption/ionization-time of flight/mass spectrometry of the mutated form of lipomannan shows a family of phosphatidylinositol-anchored lipomannans with from only 5 to 20 Manp residues as compared with lipomannan from the wild type strain consisting of 21-34 Manp residues but with few changes in the branching pattern. Thus, MSMEG4245 is apparently a key mannosyltransferase, required for the proper elongation of lipomannan to its normal state and subsequent synthesis of lipoarabinomannan. The corresponding ortholog in Mycobacterium tuberculosis H37Rv has been identified as Rv2174. This previously unrecognized feature of the biosynthesis of lipomannan/lipoarabinomannan allows a significant revision of structural and biosynthetic schemata and provides a molecular basis of selectivity in biosynthesis, as conferred by the MSMEG4245 gene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号