首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   585篇
  免费   38篇
  2023年   5篇
  2022年   5篇
  2021年   20篇
  2020年   14篇
  2019年   16篇
  2018年   18篇
  2017年   12篇
  2016年   20篇
  2015年   32篇
  2014年   40篇
  2013年   37篇
  2012年   57篇
  2011年   42篇
  2010年   27篇
  2009年   19篇
  2008年   27篇
  2007年   38篇
  2006年   29篇
  2005年   31篇
  2004年   30篇
  2003年   20篇
  2002年   17篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   9篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   4篇
  1988年   2篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1978年   2篇
  1976年   1篇
  1975年   2篇
  1973年   2篇
  1972年   2篇
  1970年   1篇
排序方式: 共有623条查询结果,搜索用时 46 毫秒
111.
We aim to investigate whether A2A/nitric oxide-mediated regulation of vascular endothelial growth factor (VEGF) expression is impaired in feto-placental endothelial cells from late-onset pre-eclampsia. Cultures of human umbilical vein endothelial cells (HUVECs) and human placental microvascular endothelial cells (hPMECs) from normal and pre-eclamptic pregnancies were used. Assays by using small interference RNA (siRNA) for A2A were performed, and transfected cells were used for estimation of messenger RNA (mRNA) levels of VEGF, as well as for cell proliferation and angiogenesis in vitro. CGS-21680 (A2A agonist, 24 h) increases HUVEC and hPMEC proliferation in a dose response manner. Furthermore, similar to CGS-21680, the nitric oxide donor, S-nitroso-N-acetyl-penicillamine oxide (SNAP), increased cell proliferation in a dose response manner (logEC50 10?9.2 M). In hPMEC, CGS-21680 increased VEGF protein levels in both normal (~1.5-fold) and pre-eclamptic pregnancies (~1.2-fold), an effect blocked by the A2A antagonist, ZM-241385 (10?5 M) and the inhibitor of NO synthase, N ω-nitro-L-arginine methyl ester hydrochloride (L-NAME). Subsequently, SNAP partially recovered cell proliferation and in vitro angiogenesis capacity of cells from normal pregnancies exposed to siRNA for A2A. CGS-21680 also increased (~1.5-fold) the level of VEGF mRNA in HUVEC from normal pregnancies, but not in pre-eclampsia. Additionally, transfection with siRNA for A2A decrease (~30 %) the level of mRNA for VEGF in normal pregnancy compared to untransfected cells, an effect partially reversed by co-incubation with SNAP. The A2A-NO-VEGF pathway is present in endothelium from microcirculation and macrocirculation in both normal and pre-eclamptic pregnancies. However, NO signaling pathway seems to be impaired in HUVEC from pre-eclampsia.  相似文献   
112.
During Trypanosoma cruzi cell invasion, signal transduction pathways are triggered in parasite and host cells, leading to a rise in intracellular Ca(2+) concentration. We posed the question whether calcineurin (CaN), in particular the functional regulatory subunit CaNB, a Ca(2+)-binding EF-hand protein, was expressed in T. cruzi and whether it played a role in cell invasion. Here we report the cloning and characterization of CL strain CaNB gene, as well as the participation of CaNB in cell invasion. Treatment of metacyclic trypomastigotes (MT) or tissue-culture trypomastigotes (TCT) with the CaN inhibitors cyclosporin or cypermethrin strongly inhibited (62-64%) their entry into HeLa cells. In assays using anti-phospho-serine/threonine antibodies, a few proteins of MT were found to be dephosphorylated in a manner inhibitable by cyclosporin upon exposure to HeLa cell extract. The phosphatase activity of CaN was detected by a biochemical approach in both MT and TCT. Treatment of parasites with antisense phosphorothioate oligonucleotides directed to TcCaNB-CL, which reduced the expression of TcCaNB and affected TcCaN activity, resulted in approximately 50% inhibition of HeLa cell entry by MT or TCT. Given that TcCaNB-CL may play a key role in cell invasion and differs considerably in its primary structure from the human CaNB, it might be considered as a potential chemotherapeutic target.  相似文献   
113.
114.
The conservation of desirable properties in foods and ingredients is often based on the maintenance of the amorphous metastable properties of the systems. Enzymes may be stabilized by drying in saccharide matrices, but a second excipient is generally required to improve sugar protective effects. The effect of electrolytes on the thermophysical properties of sugar systems is of special interest because of their major influence on water structure and their possible interactions with biomolecules. Salts affect the kinetics of very important changes in sugar systems such as crystallization. The purpose of the present work was to analyze fungal β-galactosidase stability in supercooled systems of trehalose-containing electrolytes (water soluble acetates, citrates, and chlorides of magnesium and potassium). The degree of sugar crystallization was also related to enzyme stability. Potassium citrate and acetate improved enzyme stability during freeze-drying and thermal treatment of samples at water activity (a w) of 0.22. However, trehalose crystallization inhibition at a w = 0.43 (which was about 50–60%, related to the system without salt) impaired enzyme protection. Certain salts may act retarding sugar crystallization, but in the presence of salts, trehalose crystallization is even more critical because the enzyme is confined in a highly salt-concentrated region. Thus, crystallization inhibition by sugar–salt combinations should be carefully conducted. Santagapita, Research Fellow, CONICET, Argentina. Buera, Member of CONICET, Argentina. An erratum to this article can be found at  相似文献   
115.
116.
Squamous cell carcinoma (SCC) of the oral cavity is one of the most common neoplasms in the world. During the past 2 decades, the role of high-risk human papilloma virus (HR-HPV) has been studied and the data supporting HPV as a one of the causative agents in the development and progression of a sub-set of head and neck squamous cell carcinomas (HNSCC) has accumulated. In order to investigate the role of HR-HPV oncogene expression in early epithelial alterations in vivo, we produced transgenic mice expressing HPV16 early region genes from the promoter of the bovine keratin 6 gene (Tg[bK6-E6/E7]). In this article, we demonstrate that E6/E7 transgene was abundantly expressed and cellular proliferation was increased in the middle tongue epithelia of transgenic mice, and that in the same region young (27 weeks old) Tg[bK6-E6/E7] mice spontaneously developed histological alterations, mainly focal epithelial hyperplasia (FEH).  相似文献   
117.
Antibodies provide a sensitive indicator of proteins displayed by bacteria during sepsis. Because signals produced by infection are naturally amplified during the antibody response, host immunity can be used to identify biomarkers for proteins that are present at levels currently below detectable limits. We developed a microarray comprising ∼70% of the 4066 proteins contained within the Yersinia pestis proteome to identify antibody biomarkers distinguishing plague from infections caused by other bacterial pathogens that may initially present similar clinical symptoms. We first examined rabbit antibodies produced against proteomes extracted from Y. pestis, Burkholderia mallei, Burkholderia cepecia, Burkholderia pseudomallei, Pseudomonas aeruginosa, Salmonella typhimurium, Shigella flexneri, and Escherichia coli, all pathogenic Gram-negative bacteria. These antibodies enabled detection of shared cross-reactive proteins, fingerprint proteins common for two or more bacteria, and signature proteins specific to each pathogen. Recognition by rabbit and non-human primate antibodies involved less than 100 of the thousands of proteins present within the Y. pestis proteome. Further antigen binding patterns were revealed that could distinguish plague from anthrax, caused by the Gram-positive bacterium Bacillus anthracis, using sera from acutely infected or convalescent primates. Thus, our results demonstrate potential biomarkers that are either specific to one strain or common to several species of pathogenic bacteria.Plague is a disease of historical epidemics that remains an important public health problem in limited areas of the world (1). Disease transmission usually occurs through transfer of the bacillus Yersinia pestis by the bite of a flea. However, less frequent direct transfer of viable bacteria by respiratory droplets may result in primary pneumonic infection. A transient intracellular infection of phagocytic cells (2) occurs during the earliest stage of bubonic plague followed by rapid extracellular expansion of bacteria in lymph nodes. The prototypical lymphatic infection of bubonic plague may also progress to bacteremic or pneumonic infection with a very high rate of fatality if there is not rapid intervention by antibiotic treatment (3). Among the reported cases occurring annually in the United States, 15% were fatal in 2006 (4). Although only small numbers of human cases occur each year in North America, a more substantial incidence of plague is found in wild animal populations (5) with seroprevalence rates of up to 100% among mammalian carnivores in endemic areas (6). The geographic range of infection within feral populations is presently unknown but may contribute significantly to the reservoir of potential disease transmission to humans.Diagnostic tests and prophylactic vaccines or therapies must rapidly distinguish or protect against the many infectious diseases that present similar initial symptoms. Specific diagnostic tests and vaccines for plague are public health priorities primarily because of the threat from potential acts of terrorism. Because human deaths may occur within 48 h of infection (7), delays in proper diagnosis have led to disease complications and fatalities from plague (8). Yet the identification of bacterial sepsis at the earliest stage of clinical presentation is challenging because of the generalized nature of disease symptoms and the difficulty in culturing infectious agents or isolating sufficient material to identify the infectious agent by amplification of genetic markers. Although host antibody responses provide a sensitive indicator of current or past infection, insufficient numbers of validated biomarkers are available, and extensive antibody cross-reactivity among Gram-negative pathogens (912) complicates the direct analysis of serum.Identification of plague-specific antibody interactions is a daunting task because of the complexity of the bacterial proteome encountered by the host during infection. The chromosome of Y. pestis CO92 encodes ∼3885 proteins, whereas an additional 181 are episomally expressed by pCD1, pMT1, and pPCP1. For comparison, the proteome of Y. pestis KIM1 contains 4202 individual proteins (13), 87% in common with CO92 (14), and the closely related enteric pathogen Yersinia pseudotuberculosis (15, 16) contains ∼4038 proteins (chromosome plus plasmids). Recent technical advances have facilitated the development of microarrays comprising full-length, functional proteins that represent nearly complete proteomes. For example, Zhu et al. (17) reported the development of a proteome microarray containing the full-length, purified expression products of over 93% of the 6280 protein-coding genes of the yeast Saccharomyces cerevisiae, and Schmid et al. (18) described the human antibody repertoire for vaccinia virus recognition by using a viral proteome microarray. This approach opens the possibility of examining the entire bacterial proteome to elucidate proteins or protein pathways that are essential to pathogenicity or host immunity. We sought to identify biomarkers that could distinguish plague from diseases caused by other bacterial pathogens by measuring host antibody recognition of individual proteins contained within the Y. pestis proteome. The previously reported genomic sequences of Y. pestis strains KIM (13) and CO92 (14), sharing 95% identity, were used for reference. Approximately 77% of the putative Y. pestis proteome can be classified by known homologies. We successfully expressed and purified the majority (70%) of the 4066 ORFs encoded by the chromosome and plasmids of Y. pestis KIM and arrayed these products onto glass slides coated with nitrocellulose. The Y. pestis ORFs subcloned into expression vectors were fully sequenced to confirm quality and identity before use. Different approaches for studying the antibody repertoire for plague in rabbits and non-human primates were compared. Based on results from experiments using the Y. pestis proteome microarray, we identified new candidates for antibody biomarkers of bacterial infections and patterns of cross-reactivity that may be useful diagnostic tools.  相似文献   
118.
The C-type lectin DC-SIGN expressed on immature dendritic cells (DCs) captures human immunodeficiency virus (HIV) particles and enhances the infection of CD4+ T cells. This process, known as trans-enhancement of T-cell infection, has been related to HIV endocytosis. It has been proposed that DC-SIGN targets HIV to a nondegradative compartment within DCs and DC-SIGN-expressing cells, allowing incoming virus to persist for several days before infecting target cells. In this study, we provide several lines of evidence suggesting that intracellular storage of intact virions does not contribute to HIV transmission. We show that endocytosis-defective DC-SIGN molecules enhance T-cell infection as efficiently as their wild-type counterparts, indicating that DC-SIGN-mediated HIV internalization is dispensable for trans-enhancement. Furthermore, using immature DCs that are genetically resistant to infection, we demonstrate that several days after viral uptake, HIV transfer from DCs to T cells requires viral fusion and occurs exclusively through DC infection and transmission of newly synthesized viral particles. Importantly, our results suggest that DC-SIGN participates in this process by cooperating with the HIV entry receptors to facilitate cis-infection of immature DCs and subsequent viral transfer to T cells. We suggest that such a mechanism, rather than intracellular storage of incoming virus, accounts for the long-term transfer of HIV to CD4+ T cells and may contribute to the spread of infection by DCs.  相似文献   
119.
Accurate determination of the evolutionary relationships between genes is a foundational challenge in biology. Homology—evolutionary relatedness—is in many cases readily determined based on sequence similarity analysis. By contrast, whether or not two genes directly descended from a common ancestor by a speciation event (orthologs) or duplication event (paralogs) is more challenging, yet provides critical information on the history of a gene. Since 2009, this task has been the focus of the Quest for Orthologs (QFO) Consortium. The sixth QFO meeting took place in Okazaki, Japan in conjunction with the 67th National Institute for Basic Biology conference. Here, we report recent advances, applications, and oncoming challenges that were discussed during the conference. Steady progress has been made toward standardization and scalability of new and existing tools. A feature of the conference was the presentation of a panel of accessible tools for phylogenetic profiling and several developments to bring orthology beyond the gene unit—from domains to networks. This meeting brought into light several challenges to come: leveraging orthology computations to get the most of the incoming avalanche of genomic data, integrating orthology from domain to biological network levels, building better gene models, and adapting orthology approaches to the broad evolutionary and genomic diversity recognized in different forms of life and viruses.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号