首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   611篇
  免费   38篇
  649篇
  2023年   5篇
  2022年   6篇
  2021年   20篇
  2020年   14篇
  2019年   16篇
  2018年   18篇
  2017年   11篇
  2016年   19篇
  2015年   31篇
  2014年   39篇
  2013年   43篇
  2012年   59篇
  2011年   45篇
  2010年   28篇
  2009年   19篇
  2008年   26篇
  2007年   41篇
  2006年   30篇
  2005年   31篇
  2004年   31篇
  2003年   19篇
  2002年   17篇
  2001年   4篇
  2000年   5篇
  1999年   4篇
  1998年   11篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1978年   4篇
  1976年   1篇
  1975年   2篇
  1973年   2篇
  1972年   2篇
  1970年   4篇
排序方式: 共有649条查询结果,搜索用时 15 毫秒
51.
Sleep in brain development   总被引:1,自引:0,他引:1  
With the discovery of rapid eye movement (REM) sleep, sleep was no longer considered a homogeneous state of passive rest for the brain. On the contrary, sleep, and especially REM sleep, appeared as an active condition of intense cerebral activity. The fact that we get large amounts of sleep in early life suggested that sleep may play a role in brain maturation. This idea has been investigated for many years through a large number of animal and human studies, but evidence remains fragmented. The hypothesis proposed was that REM sleep would provide an endogenous source of activation, possibly critical for structural maturation of the central nervous system. This proposal led to a series of experiments looking at the role of REM sleep in brain development. In particular, the influence of sleep in developing the visual system has been highlighted. More recently, non-REM (NREM) sleep state has become a major focus of attention. The current data underscore the importance of both REM sleep and NREM sleep states in normal synaptic development and lend support to their functional roles in brain maturation. Both sleep states appear to be important for neuronal development, but the corresponding contribution is likely to be different.  相似文献   
52.
The catalase from Proteus mirabilis peroxide-resistant bacteria is one of the most efficient heme-containing catalases. It forms a relatively stable compound II. We were able to prepare samples of compound II from P. mirabilis catalase enriched in 57Fe and to study them by spectroscopic methods. Two different forms of compound II, namely, low-pH compound II (LpH II) and high-pH compound II (HpH II), have been characterized by Mössbauer, extended X-ray absorption fine structure (EXAFS) and UV-vis absorption spectroscopies. The proportions of the two forms are pH-dependent and the pH conversion between HpH II and LpH II is irreversible. Considering (1) the Mössbauer parameters evaluated for four related models by density functional theory methods, (2) the existence of two different Fe–Oferryl bond lengths (1.80 and 1.66 Å) compatible with our EXAFS data and (3) the pH dependence of the α band to β band intensity ratio in the absorption spectra, we attribute the LpH II compound to a protonated ferryl FeIV–OH complex (Fe–O approximately 1.80 Å), whereas the HpH II compound corresponds to the classic ferryl FeIV=O complex (Fe=O approximately 1.66 Å). The large quadrupole splitting value of LpH II (measured 2.29 mm s?1 vs. computed 2.15 mm s?1) compared with that of HpH II (measured 1.47 mm s?1 vs. computed 1.46 mm s?1) reflects the protonation of the ferryl group. The relevancy and involvement of such (FeIV=O/FeIV–OH) species in the reactivity of catalase, peroxidase and chloroperoxidase are discussed.  相似文献   
53.

Background  

Researchers involved in the annotation of large numbers of gene, clone or protein identifiers are usually required to perform a one-by-one conversion for each identifier. When the field of research is one such as microarray experiments, this number may be around 30,000.  相似文献   
54.
Frizzled/planar cell polarity (Fz/PCP) signaling controls the orientation of sensory bristles and cellular hairs (trichomes) along the anteroposterior axis of the Drosophila thorax (notum). A subset of the trichome-producing notum cells differentiate as "tendon cells," serving as attachment sites for the indirect flight muscles (IFMs) to the exoskeleton. Through the analysis of chascon (chas), a gene identified by its ability to disrupt Fz/PCP signaling under overexpression conditions, and jitterbug (jbug)/filamin, we show that maintenance of anteroposterior planar polarization requires the notum epithelia to balance mechanical stress generated by the attachment of the IFMs. chas is expressed in notum tendon cells, and its loss of function disturbs cellular orientation at and near the regions where IFMs attach to the epidermis. This effect is independent of the Fz/PCP and fat/dachsous systems. The chas phenotype arises during normal shortening of the IFMs and is suppressed by genetic ablation of the IFMs. chas acts through jbug/filamin and cooperates with MyosinII to modulate the mechanoresponse of notum tendon cells. These observations support the notion that the ability of epithelia to respond to mechanical stress generated by one or more interactions with other tissues during development and organogenesis influences the maintenance of its shape and PCP features.  相似文献   
55.
Several alternatives to the conventional alginate beads formulation were studied for encapsulation of invertase. Pectin was added to the alginate/enzyme solution while trehalose and β-cyclodextrin were added to the calcium gelation media. The effect of composition changes, freezing, drying methods (freeze, vacuum, or air drying), and thermal treatment were evaluated on invertase stability and its release kinetics from beads. The enzyme release mechanism from wet beads depended on pH. The addition of trehalose, pectin, and β-cyclodextrin modified the bead structure, leading in some cases to a release mechanism that included the relaxation of the polymer chains, besides Fickian diffusion. Enzyme release from vacuum-dried beads was much faster than from freeze-dried beads, probably due to their higher pore size. The inclusion of β-cyclodextrin and especially of pectin prevented enzyme activity losses during bead generation, and trehalose addition was fundamental for achieving adequate invertase protection during freezing, drying, and thermal treatment. Present results showed that several alternatives such as drying method, composition, as well as pH of the relese medium can be managed to control enzyme release.  相似文献   
56.
A single test, including one pseudo-backcross (Pinus elliottii x Pinus taeda) x P. elliottii and open-pollinated families of the pure species progenitors, was established in North Central Florida in December 2007 to study the transfer of the fast-growing characteristics from a P. taeda L. (loblolly pine) parent into the P. elliottii Engelm. (slash pine) background. Several traits were measured in the first growing season: height growth, phenology, tip moth incidence, stem traits, crown architectural and needle traits. Heterosis was evaluated for each trait using analyses of variance by fitting a linear mixed model. All traits were significantly (p value < 0.05) different among families while the significance for heterosis varied by trait. Positive heterosis was found for average rate of shoot elongation (ASRE), total growth (TG), total height and number of needles per fascicle while the opposite was true for base diameter, top diameter, fascicle length, fascicle diameter, crown projected area and phenological traits (cessation, duration and day to reach 50% of the height). Average performance (i.e., no heterosis) was found for initiation of growth, number of branches, number of nodes, tip moth incidence, sheath length and specific leaf area. The analyses indicated that introgression of loblolly pine alleles into slash pine was effective and novel trait combinations were achieved. The pseudo-backcross had larger variation in early height growth than the slash pine families and was taller than all open-pollinated families at the end of the first season. Tip moth incidence was much lower than the loblolly pine family.  相似文献   
57.

Background

The bovine rumen maintains a diverse microbial community that serves to break down indigestible plant substrates. However, those bacteria specifically adapted to degrade cellulose, the major structural component of plant biomass, represent a fraction of the rumen microbiome. Previously, we proposed scaC as a candidate for phylotyping Ruminococcus flavefaciens, one of three major cellulolytic bacterial species isolated from the rumen. In the present report we examine the dynamics and diversity of scaC-types both within and between cattle temporally, following a dietary switch from corn-silage to grass-legume hay. These results were placed in the context of the overall bacterial population dynamics measured using the 16S rRNA.

Principal Findings

As many as 117 scaC-types were estimated, although just nineteen were detected in each of three rumens tested, and these collectively accounted for the majority of all types present. Variation in scaC populations was observed between cattle, between planktonic and fiber-associated fractions and temporally over the six-week survey, and appeared related to scaC phylogeny. However, by the sixth week no significant separation of scaC populations was seen between animals, suggesting enrichment of a constrained set of scaC-types. Comparing the amino-acid translation of each scaC-type revealed sequence variation within part of the predicted dockerin module but strong conservation in the N-terminus, where the cohesin module is located.

Conclusions

The R. flavefaciens species comprises a multiplicity of scaC-types in-vivo. Enrichment of particular scaC-types temporally, following a dietary switch, and between fractions along with the phylogenetic congruence suggests that functional differences exist between types. Observed differences in dockerin modules suggest at least part of the functional heterogeneity may be conferred by scaC. The polymorphic nature of scaC enables the relative distribution of R. flavefaciens strains to be examined and represents a gene-centric approach to investigating the intraspecific adaptation of an important specialist population.  相似文献   
58.
Neural crest cells exhibit dramatic migration behaviors as they populate their distant targets. Using a line of zebrafish expressing green fluorescent protein (sox10:EGFP) in neural crest cells we developed an assay to analyze and quantify cell migration as a population, and use it here to characterize in detail the subtle defects in cell migration caused by ethanol exposure during early development. The challenge was to quantify changes in the in vivo migration of all Sox10:EGFP expressing cells in the visual field of time-lapse movies. To perform this analysis we used an Optical Flow algorithm for motion detection and combined the analysis with a fit to an affine transformation. Through this analysis we detected and quantified significant differences in the cell migrations of Sox10:EGFP positive cranial neural crest populations in ethanol treated versus untreated embryos. Specifically, treatment affected migration by increasing the left-right asymmetry of the migrating cells and by altering the direction of cell movements. Thus, by applying this novel computational analysis, we were able to quantify the movements of populations of cells, allowing us to detect subtle changes in cell behaviors. Because cranial neural crest cells contribute to the formation of the frontal mass these subtle differences may underlie commonly observed facial asymmetries in normal human populations.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号