全文获取类型
收费全文 | 701篇 |
免费 | 49篇 |
专业分类
750篇 |
出版年
2023年 | 7篇 |
2022年 | 10篇 |
2021年 | 21篇 |
2020年 | 15篇 |
2019年 | 18篇 |
2018年 | 19篇 |
2017年 | 14篇 |
2016年 | 26篇 |
2015年 | 34篇 |
2014年 | 42篇 |
2013年 | 43篇 |
2012年 | 66篇 |
2011年 | 49篇 |
2010年 | 33篇 |
2009年 | 29篇 |
2008年 | 31篇 |
2007年 | 42篇 |
2006年 | 32篇 |
2005年 | 39篇 |
2004年 | 39篇 |
2003年 | 25篇 |
2002年 | 20篇 |
2001年 | 8篇 |
2000年 | 10篇 |
1999年 | 8篇 |
1998年 | 9篇 |
1997年 | 3篇 |
1996年 | 3篇 |
1995年 | 4篇 |
1994年 | 3篇 |
1993年 | 3篇 |
1992年 | 4篇 |
1991年 | 2篇 |
1990年 | 2篇 |
1989年 | 3篇 |
1988年 | 3篇 |
1986年 | 3篇 |
1984年 | 2篇 |
1982年 | 2篇 |
1981年 | 3篇 |
1980年 | 3篇 |
1979年 | 1篇 |
1978年 | 2篇 |
1976年 | 1篇 |
1975年 | 2篇 |
1974年 | 1篇 |
1973年 | 2篇 |
1972年 | 2篇 |
1970年 | 5篇 |
1966年 | 1篇 |
排序方式: 共有750条查询结果,搜索用时 15 毫秒
21.
22.
Several alternatives to the conventional alginate beads formulation were studied for encapsulation of invertase. Pectin was added to the alginate/enzyme solution while trehalose and β-cyclodextrin were added to the calcium gelation media. The effect of composition changes, freezing, drying methods (freeze, vacuum, or air drying), and thermal treatment were evaluated on invertase stability and its release kinetics from beads. The enzyme release mechanism from wet beads depended on pH. The addition of trehalose, pectin, and β-cyclodextrin modified the bead structure, leading in some cases to a release mechanism that included the relaxation of the polymer chains, besides Fickian diffusion. Enzyme release from vacuum-dried beads was much faster than from freeze-dried beads, probably due to their higher pore size. The inclusion of β-cyclodextrin and especially of pectin prevented enzyme activity losses during bead generation, and trehalose addition was fundamental for achieving adequate invertase protection during freezing, drying, and thermal treatment. Present results showed that several alternatives such as drying method, composition, as well as pH of the relese medium can be managed to control enzyme release. 相似文献
23.
24.
25.
Involvement of the LlaKR2I methylase in expression of the AbiR bacteriophage defense system in Lactococcus lactis subsp. lactis biovar diacetylactis KR2 下载免费PDF全文
The native lactococcal plasmid, pKR223, from Lactococcus lactis subsp. lactis biovar diacetylactis KR2 encodes two distinct bacteriophage-resistant mechanisms, the LlaKR2I restriction and modification (R/M) system and the abortive infection (Abi) mechanism, AbiR, that impedes bacteriophage DNA replication. This study completed the characterization of AbiR, revealing that it is the first Abi system to be encoded by three genes, abiRa, abiRb, and abiRc, arranged in an operon and that it requires the methylase gene from the LlaKR2I R/M system. An analysis of deletion and insertion clones demonstrated that the AbiR operon was toxic in L. lactis without the presence of the LlaKR2I methylase, which is required to protect L. lactis from AbiR toxicity. The novelty of the AbiR system resides in its original gene organization and the unusual protective role of the LlaKR2I methylase. Interestingly, the AbiR genetic determinants are flanked by two IS982 elements generating a likely transposable AbiR composite. This observation not only substantiated the novel function of the LlaKR2I methylase in the AbiR system but also illustrated the evolution of the LlaKR2I methylase toward a new and separate cellular function. This unique structure of both the LlaKR2I R/M system and the AbiR system may have contributed to the evolution of the LlaKR2I methylase toward a novel role comparable to that of the cell cycle-regulated methylases that include Dam and CcrM methylases. This new role for the LlaKR2I methylase offers a unique snapshot into the evolution of the cell cycle-regulated methylases from an existing R/M system. 相似文献
26.
27.
M.?Josefina?Poupin Patricio?Arce-JohnsonEmail author 《In vitro cellular & developmental biology. Plant》2005,41(2):91-101
Summary Traditional breeding has been widely used in forestry. However, this technique is inefficient because trees have a long and
complex life cycle that is not amenable to strict control by man. Fortunately, the development of genetic engineering is offering
new ways of breeding and allowing the incorporation of new traits in plant species through the introduction of foreign genes
(transgenes). The introduction of selected traits can be used to increase the productivity and commercial value of trees and
other plants. For example, some species have been endowed with resistance to herbicide and pathogens such as insects and fungi.
Also, it has been possible to introduce genes that modify development and wood quality, and induce sexual sterility. The development
of transgenic trees has required the implementation of in vitro regeneration techniques such as organogenesis and somatic embryogenesis. Release of transgenic species into the agricultural
market requires a standardized biosafety regulatory frame and effective communication between the scientific community and
society to dissipate the suspicions associated with transgenic products. 相似文献
28.
Sarah L. Keasey Kara E. Schmid Michael S. Lee James Meegan Patricio Tomas Michael Minto Alexander P. Tikhonov Barry Schweitzer Robert G. Ulrich 《Molecular & cellular proteomics : MCP》2009,8(5):924-935
Antibodies provide a sensitive indicator of proteins displayed by bacteria during sepsis. Because signals produced by infection are naturally amplified during the antibody response, host immunity can be used to identify biomarkers for proteins that are present at levels currently below detectable limits. We developed a microarray comprising ∼70% of the 4066 proteins contained within the Yersinia pestis proteome to identify antibody biomarkers distinguishing plague from infections caused by other bacterial pathogens that may initially present similar clinical symptoms. We first examined rabbit antibodies produced against proteomes extracted from Y. pestis, Burkholderia mallei, Burkholderia cepecia, Burkholderia pseudomallei, Pseudomonas aeruginosa, Salmonella typhimurium, Shigella flexneri, and Escherichia coli, all pathogenic Gram-negative bacteria. These antibodies enabled detection of shared cross-reactive proteins, fingerprint proteins common for two or more bacteria, and signature proteins specific to each pathogen. Recognition by rabbit and non-human primate antibodies involved less than 100 of the thousands of proteins present within the Y. pestis proteome. Further antigen binding patterns were revealed that could distinguish plague from anthrax, caused by the Gram-positive bacterium Bacillus anthracis, using sera from acutely infected or convalescent primates. Thus, our results demonstrate potential biomarkers that are either specific to one strain or common to several species of pathogenic bacteria.Plague is a disease of historical epidemics that remains an important public health problem in limited areas of the world (1). Disease transmission usually occurs through transfer of the bacillus Yersinia pestis by the bite of a flea. However, less frequent direct transfer of viable bacteria by respiratory droplets may result in primary pneumonic infection. A transient intracellular infection of phagocytic cells (2) occurs during the earliest stage of bubonic plague followed by rapid extracellular expansion of bacteria in lymph nodes. The prototypical lymphatic infection of bubonic plague may also progress to bacteremic or pneumonic infection with a very high rate of fatality if there is not rapid intervention by antibiotic treatment (3). Among the reported cases occurring annually in the United States, 15% were fatal in 2006 (4). Although only small numbers of human cases occur each year in North America, a more substantial incidence of plague is found in wild animal populations (5) with seroprevalence rates of up to 100% among mammalian carnivores in endemic areas (6). The geographic range of infection within feral populations is presently unknown but may contribute significantly to the reservoir of potential disease transmission to humans.Diagnostic tests and prophylactic vaccines or therapies must rapidly distinguish or protect against the many infectious diseases that present similar initial symptoms. Specific diagnostic tests and vaccines for plague are public health priorities primarily because of the threat from potential acts of terrorism. Because human deaths may occur within 48 h of infection (7), delays in proper diagnosis have led to disease complications and fatalities from plague (8). Yet the identification of bacterial sepsis at the earliest stage of clinical presentation is challenging because of the generalized nature of disease symptoms and the difficulty in culturing infectious agents or isolating sufficient material to identify the infectious agent by amplification of genetic markers. Although host antibody responses provide a sensitive indicator of current or past infection, insufficient numbers of validated biomarkers are available, and extensive antibody cross-reactivity among Gram-negative pathogens (9–12) complicates the direct analysis of serum.Identification of plague-specific antibody interactions is a daunting task because of the complexity of the bacterial proteome encountered by the host during infection. The chromosome of Y. pestis CO92 encodes ∼3885 proteins, whereas an additional 181 are episomally expressed by pCD1, pMT1, and pPCP1. For comparison, the proteome of Y. pestis KIM1 contains 4202 individual proteins (13), 87% in common with CO92 (14), and the closely related enteric pathogen Yersinia pseudotuberculosis (15, 16) contains ∼4038 proteins (chromosome plus plasmids). Recent technical advances have facilitated the development of microarrays comprising full-length, functional proteins that represent nearly complete proteomes. For example, Zhu et al. (17) reported the development of a proteome microarray containing the full-length, purified expression products of over 93% of the 6280 protein-coding genes of the yeast Saccharomyces cerevisiae, and Schmid et al. (18) described the human antibody repertoire for vaccinia virus recognition by using a viral proteome microarray. This approach opens the possibility of examining the entire bacterial proteome to elucidate proteins or protein pathways that are essential to pathogenicity or host immunity. We sought to identify biomarkers that could distinguish plague from diseases caused by other bacterial pathogens by measuring host antibody recognition of individual proteins contained within the Y. pestis proteome. The previously reported genomic sequences of Y. pestis strains KIM (13) and CO92 (14), sharing 95% identity, were used for reference. Approximately 77% of the putative Y. pestis proteome can be classified by known homologies. We successfully expressed and purified the majority (70%) of the 4066 ORFs encoded by the chromosome and plasmids of Y. pestis KIM and arrayed these products onto glass slides coated with nitrocellulose. The Y. pestis ORFs subcloned into expression vectors were fully sequenced to confirm quality and identity before use. Different approaches for studying the antibody repertoire for plague in rabbits and non-human primates were compared. Based on results from experiments using the Y. pestis proteome microarray, we identified new candidates for antibody biomarkers of bacterial infections and patterns of cross-reactivity that may be useful diagnostic tools. 相似文献
29.
Species of amoebae belonging to the genera Platyamoeba Page, 1969, Vannella Bovee, 1965 and Flabellula Schaeffer, 1926 were found to accompany Paramoeba sp., the agent of amoebic gill disease (AGD), in clinically diseased turbots. The same community of epizoic gymnamoebae was found on the gills of turbots which revealed no gill abnormalities but slight behavioral signs indicative of suboptimal health status. The assemblage of the above-mentioned free-living amoebae capable of colonizing gill tissue of turbots was supplemented with species recognized in samples fixed from primary isolates for transmission electron microscopy. The pathogenic potential of epizoic gill amoebae in turbots is discussed. 相似文献
30.
A protozoan parasite identified by histology as a haplosporidian was detected in carpet shell clam Ruditapes decussatus from Spain during routine samplings. Analysis based on the sequence of the small subunit ribosomal RNA gene revealed that this organism was related to the haplosporidian group, mainly to Urosporidium. A specific probe was used for in situ hybridization studies to show the specificity of the amplified sequence. 相似文献